Geometry I (2025 Fall)





Course Description

The material that will be covered in the Fall semester includes (but not restricted to) the following: ³o¬O¤@ªù¨â¾Ç´Áªº½Ò(ÁöµM¹ï¦³¨Ç¦P¾Ç¨Ó»¡²Ä¤G¾Ç´Á¤£¬O¥²­×)¡A©Ò¥H¤W­±©Ò¦Cªº¤º®e¤£¤@©w·|¦b²Ä¤@¾Ç´Á¥þ³¡¤W§¹¡C¤£½×¤W¨ì­þ¸Ì¡A¤U¾Ç´Á´N·|±q¨ºùض}©l±µ¤U¥h¤W¡C¥t¥~¡A³oªù½Ò·|¨Ï¥Î¦hÅܼƷL¿n¤À¡A½u©Ê¥N¼Æ¥H¤Î¤@¨Ç°ª·Lªºª¾ÃÑ¡A³o¨Çºâ¬O³oªù½Òªºpre-requirement¡C

References

Syllabus

  • 9/2(¤G): Course outline (®É¶¡¬O²Ä8°ó)
  • 9/3(¤T): (Tutorial: ²Ä¤@¶g¤£¤W²ßÃD½Ò)
  • 9/4(¥|): 2.2: definition of surfaces, examples, and regular value theorem
  • 9/9(¤G): 2.3: change of parametrizations, 2.4: tangent planes (®É¶¡ª`·N¬O89°ó)
  • 9/10(¤T): (Tutorial: 2.2, 2.3)
  • 9/11(¥|): 2.4: differential of a map between surfaces, 2.5: first fundamental form
  • 9/16(¤G): 2.5: surface area, part of 2.8, and 2.6: orientability (®É¶¡ª`·N¬O89°ó)
  • 9/17(¤T): (Tutorial: 2.3, 2.4)
  • 9/18(¥|): 2.6: orientability; Review of change of parametrizations, some notes
  • 9/23(¤G): 3.2: Gauss map, differential of Gauss map (®É¶¡ª`·N¬O89°ó)
  • 9/24(¤T): (Tutorial: 2.4, 2.5 )
  • 9/25(¥|): ®É¶¡²¾¨ì 9/9 ¥H¤Î 9/16
  • 9/30(¤G): ®É¶¡²¾¨ì 9/23
  • 10/1(¤T): (Tutorial: 2.5, 2.6)
  • 10/2(¥|): 3.2: Second fundamental form
  • 10/7(¤G): 3.2: Gaussian curvature, mean curvature, Dupin indicatrix (®É¶¡ª`·N¬O89°ó)
  • 10/8(¤T): (Tutorial: 2.6, 3.2)
  • 10/9(¥|)*: Finishing 3.2, start 3.3
  • 10/14(¤G)*: 3.3: Gauss map in local coordinate (®É¶¡ª`·N¬O89°ó)
  • 10/15(¤T): (Tutorial: 3.2)
  • 10/16(¥|)*: 3.3: Gauss map in local coordinate
  • 10/21(¤G)*: 3.3: calculating the principal direction and the asymptotic direction (®É¶¡ª`·N¬O89°ó)
  • 10/22(¤T): (Tutorial: 3.2, 3.3)
  • 10/23(¥|)*: Midterm: chapter 2.1-2.6, 3.2-3.3

  • 10/28(¤G)*: ®É¶¡²¾¨ì 10/7
  • 10/29(¤T): (Tutorial: 3.3)
  • 10/30(¥|)*: ®É¶¡²¾¨ì 10/14 ¥H¤Î 10/21
  • 11/4(¤G)*: 3.3: Geometric meaning of the Gauss curvature (®É¶¡ª`·N¬O89°ó)
  • 11/5(¤T): (Tutorial: À˰Q¦Ò¨÷ )
  • 11/6(¥|)*: 3.3: 3rd fundamental form
  • 11/11(¤G)*: ®É¶¡²¾¨ì 11/4
  • 11/12(¤T): (Tutorial: University Holiday (¹B°Ê·|))
  • 11/13(¥|)*: ®É¶¡²¾¨ì 11/18 ¥H¤Î 11/25
  • 11/18(¤G)*: 3.5: minimal surface (®É¶¡ª`·N¬O89°ó)
  • 11/19(¤T): (Tutorial: 3.5 )
  • 11/20(¥|)*: 3.5: ruled surface, 3.4: vector fields
  • 11/25(¤G)*: 3.4: special parametrizations 4.2: isometry (®É¶¡ª`·N¬O89°ó)
  • 11/26(¤T): (Tutorial: 3.4, 4.3)
  • 11/27(¥|)*: 4.3: intrinsic geometry
  • 12/2(¤G)*: 4.4: parallel transport (®É¶¡ª`·N¬O89°ó)
  • 12/3(¤T): (Tutorial: 4.2)
  • 12/4(¥|)*: 4.4: geodesic
  • 12/9(¤G)*: 4.5: Gauss-Bonnet Theorem, 2.6: orientation(®É¶¡ª`·N¬O89°ó)
  • 12/10(¤T): (Tutorial: 4.3)
  • 12/11(¥|)*: ®É¶¡²¾¨ì 12/2 ¥H¤Î 12/9
  • 12/16(¤G)*: Final exam
  • 12/??: ¬Ý¦Ò¨÷
  • Homework (to be announced)

    Evaluation (´Á¥½¦¨ÁZ§¹¥þ¨Ì¤½¦¡±o¨ì)


    Last Updated: October 2, 2025
    URL: http://www.math.nthu.edu.tw/~nankuo/G2025F.html