Recall what is $\vec{X}_u & \vec{X}_v$? exall what is $\overline{X}_{u} & \overline{X}_{v}$? $\overline{X}: (u,v) \in \mathbb{R}^{2} \longrightarrow (x(u,v), y(u,v), z(u,v)) \text{ a parametrization}$ around $\overline{X}(u_0,v_0)=P\in S$ Then $\overrightarrow{X_u} := \frac{\partial \overrightarrow{X}}{\partial u}$, $\overrightarrow{X_v} := \frac{\partial \overrightarrow{X}}{\partial v}$ => we see that the domain for X is u-v plane, so one should write $\chi_{u}(u,v)$ to represent the vector in \mathbb{R}^3 , because $\overline{X}_{y}(u,v) := \left(\frac{\partial X}{\partial u}(u,v), \frac{\partial Y}{\partial u}(u,v), \frac{\partial Z}{\partial u}(u,v)\right)$ However, what we usually do, is to write $X_u(\varphi)$, where $P \in S$ is a point on S! So what this notation $X_4(9)$ means, is really $\overline{X_u}(u_0,v_0)$ if $p=\overline{X}(u_0,v_0)$! so for a curve on the u-v plane: U: I→ R2 u-v plane, t → d(+)= (u(+), v(+)) with & (0)=(40, vo) = (40, v), X(xo)=X(40, v) = P ES The tangent vector to the curve on S at p $\overline{\chi}(d(n): I \rightarrow SCR^3, t \mapsto \overline{\chi}(u(n), v(n))$ [7.e, X (ue), ve)) = (x(ue), ve)), y(ue), ve), = (ue), ve) $\frac{dt}{d} \left| \frac{\chi}{\chi}(\eta e) - \frac{dt}{d} \right| \frac{\chi}{\chi}(\eta e) \wedge (e) - \frac{g\eta}{g\chi}(\eta e) \wedge (e) + \frac{g\chi}{g\chi}(\eta e) \wedge (e)$ (Recall u(o)=u, V(o)=vo)

This is why we wrote: for
$$V \in T_p S$$
, by definition $\exists d: I \rightarrow \mathbb{R}^2$ s.t. $\overrightarrow{X}(\alpha(o)) = P$, $\frac{d}{dz} | \overrightarrow{X}(\alpha(o)) = V$

Then in parametrization V can be rewritten as

 $V = \frac{d}{dz} | \overrightarrow{X}(\alpha(o)) = \overrightarrow{X}(u_0,v_0) \cdot u(o) + \overrightarrow{X}_V(u_0,v_0) \cdot v(o)$

The ond for convenince, write as $\overrightarrow{X}_U(p) \cdot u(o) + \overrightarrow{X}_V(p) \cdot v(o)$

Now let's look at the proof we did in the class:

 $(daim: \langle d\overrightarrow{N}_P(\overrightarrow{X}_U), \overrightarrow{X}_V \rangle = \langle \overrightarrow{X}_U, d\overrightarrow{N}_P(\overrightarrow{X}_V) \rangle$

The left hand side $\langle d\overrightarrow{N}_P(\overrightarrow{X}_U), \overrightarrow{X}_V \rangle$ means

 $\langle d\overrightarrow{N}_P(\overrightarrow{X}_U q_0), \overrightarrow{X}_V(q_0) \rangle$, where $\overrightarrow{X}_U(p_0) \supseteq \overrightarrow{X}_V(p_0)$ are explained above.

Which is heally

 $\langle d\overrightarrow{N}_P(\overrightarrow{X}_U(u_0, v_0)), \overrightarrow{X}_V(u_0, v_0) \rangle$, where $p = \overrightarrow{X}(u_0, v_0)$
 $(so \overrightarrow{X}_U(u_0, v_0) \in T_P S)$

and $\overrightarrow{X}_V(u_0, v_0) \in T_P S$

Now recall how do we calculate differential:

If we have a map between two smooth surfaces

and Ve TpS, , then $df(V) \in T_{f(p)}S_2^{-75}$ defined as 1° pick a curve $Y(t): I \longrightarrow S$ such that Y(0)=P, Y'(0)=V

ie, sending the curve from the domain to the image, then take the derivative.

So to calculate $dN_p(\tilde{X}_u(u_0,v_0))$, we need to find a Curve on S such that the tangent vector to this curve at the pt is $\tilde{X}_u(u_0,v_0)$.

so what is this curve ?

Re Call:

domain

and
$$X''(u_0,v_0):=\frac{\partial X}{\partial x}(u_0,v_0)=\frac{d}{dt} |X'(\alpha(t))|$$

Where
$$Q(t) = (u(t), V(t)) = (u_0 + t, v_0)$$

is $u - Curve$ passing (u_0, v_0)

So
$$\overline{X_{i}}(u_{0},v_{0}) = \frac{di}{dt} \overline{X}(u_{0}+t, v_{0})$$

$$= \frac{\partial \overline{X}}{\partial u}(u_{0},v_{0}) \cdot \frac{d(u_{0}+t)}{dt} + \frac{\partial \overline{X}}{\partial v}(u_{0},v_{0}) \cdot \frac{d(v_{0})}{dt}$$

$$= \frac{\partial \overline{X}}{\partial u}(u_{0},v_{0}) \cdot (1 + \frac{\partial \overline{X}}{\partial v}(u_{0},v_{0}) \cdot 0)$$

So
$$dN_{\rho}(\vec{X}_{\mu}(u_{0},v_{0})) = \frac{d}{dt} |\vec{N}(\vec{X}_{(\alpha(4))})|$$

$$= \frac{d}{dt} |\vec{N} \cdot \vec{X}(u_{0}+t,v_{0})$$

$$= \frac{d}{dt} |\vec{N} \cdot \vec{X}(u_{0}+t,v_{0})$$

For simplicity, denote the composition
$$V_{old} = \frac{\partial \vec{N}}{\partial u}(u_{o},v_{o}) \cdot \frac{d(u_{o}+t)}{dt} + \frac{\partial \vec{N}}{\partial v}(u_{o},v_{o}) \cdot 0$$

for taking derivative $V_{old} = V_{old}(p)$

i.e. egain, we abuse the notation $\vec{N}_{u}(p)$ to mean $(\vec{N}_{old} \vec{X})_{u}(u_{o},v_{o})$ if $\vec{X}(u_{o},v_{o}) = p$.

So to compute $\langle dN_{p}(\vec{X}_{u}), \vec{X}_{v} \rangle$, its really $\langle d\vec{N}_{p}(\vec{X}_{u}(u_{o},v_{o})), \vec{X}_{v}(u_{o},v_{o}) \rangle$
 $= \langle d\vec{t} | \vec{N}(\vec{X}(u_{o},v_{o})), \vec{X}_{v}(u_{o},v_{o}) \rangle$
 $= \langle d\vec{t} | \vec{N}(\vec{X}(u_{o},v_{o})), \vec{X}_{v}(u_{o},v_{o}) \rangle$
 $= \langle d\vec{t} | \vec{N}(\vec{X}(u_{o},v_{o})), \vec{X}_{v}(u_{o},v_{o}) \rangle$
 $= \langle \vec{N}(\vec{X}(u_{o},v_{o})), \vec{X}_{v}(u_{o},v_{o},v_{o}) \rangle$
 $= \langle \vec{N}(\vec{X}(u_{o},v_{o},$

Similarly, to compute $\langle \vec{X}_u, d\vec{N}_p(x_p) \rangle$, we start With X, (p), which is really X, (uo, vo) and define $\beta(t)$: $I \rightarrow (R^2, t \mapsto (u(t), v(t)) + for <math>X_s^2(u_0, v_0)$ Then B(6)=(u0, V0), B(t)=(u0, V0+t), B(0)=e2 and $\chi_{s}^{\Lambda}(b) := \chi_{s}(n^{0}N) = \frac{9\Lambda}{9\chi_{s}}(n^{0}N^{0})$ (uo, vo) = dt X (B(4)) If also denote $\beta(t) = (u(t), v(t))$, then $u(t) = u_0$ and V(t) = Vo+t 4 X(BB) = 9X (no'no) · r(0) + 9x (no'no) · A(0) $= \frac{\partial V}{\partial X}((0,V_0) \cdot 1)$ $S_0 \prec \overline{X}_u^*(p, d\overline{N}_p^*(\overline{X}_v^*)(p)) \qquad \text{curve on } S$ $:= \langle \overline{X}_u^*(w,v_0), \frac{d}{de} | \overline{N}(\overline{X}_v^*(p(+))) \rangle$ $=\frac{d}{dt}|\langle \vec{X}_{u}(\beta(t)), \vec{N}(\vec{X}(\beta(t)))\rangle \times (\omega, \omega)$ $=\frac{d}{dt}|\langle \vec{X}_{u}(\beta(t)), \vec{N}(\vec{X}(\beta(0)))\rangle$ $=\frac{d}{dt}|\langle \vec{X}_{u}(\beta(t)), \vec{N}(\vec{X}(\beta(0)))\rangle$

$$= O - \langle \frac{\partial \vec{x}_u}{\partial u} \langle u(\omega), v(\omega) \rangle \cdot u'(\omega) + \frac{\partial \vec{x}_u}{\partial v} \langle u(\omega), v(\omega) \rangle \cdot v'(\omega), \vec{x}_d \omega \rangle$$

$$= -\langle \frac{\partial \vec{x}_u}{\partial v} \langle p \rangle, \vec{x}_d \rangle \rangle \quad \text{because for } \beta(e), \begin{cases} u'(\omega) = 0 \\ v'(\omega) = 1 \end{cases}$$

$$= -\langle \vec{x}_u v \langle p \rangle, \vec{x}_d \rangle \rangle \rangle \quad \text{because for } \beta(e), \begin{cases} u'(\omega) = 0 \\ v'(\omega) = 1 \end{cases}$$

$$= -\langle \vec{x}_u v \langle p \rangle, \vec{x}_d \langle p \rangle, \vec{x}_d \rangle \rangle \rangle \rangle \quad \text{hus} \quad$$

denote
$$\overrightarrow{No}\overrightarrow{X}$$
 by $\overrightarrow{N} = \langle \overrightarrow{N}_{N}(u_{0},v_{0}), \overrightarrow{X}_{N}(u_{0},v_{0}) \rangle$

$$= \frac{1}{2N} \langle \overrightarrow{N}_{N}, \overrightarrow{X}_{N} \rangle \langle u_{0},v_{0} \rangle$$

$$= \frac{1}{2N} \langle \overrightarrow{N}_{N}, \overrightarrow{X}_{N} \rangle \langle u_{0},v_{0} \rangle$$

$$= \langle \overrightarrow{N}_{N}(u_{0},v_{0}), \frac{1}{2N}(u_{0},v_{0}) \rangle$$

$$= \langle \overrightarrow{N}_{N}(u_{0},v_{0}), \overrightarrow{N}_{N}(u_{0},v_{0}), \frac{1}{2N}(u_{0},v_{0}), \frac{1}{2N}($$