
CHAPTER 8, DIFFERENTIAL EQUATIONS

8.1 Simple Differential Equations and Model

Initial value problem.
dy

dx
= F (x, y), y(x0) = y0

Theorem. Suppose that F satisfied the Lipshitz condition,

|F (x, y) − F (x′, y′)| ≤ C
√

(x − x′)2 + (y − y′)2,

for some fixed C , then the initial value problem has unique local solutuon.

In case one variable is missing.

missiing y
dy

dx
= g(x), y(x) =

∫
g(x)dx + C

missing x
dy

dx
= h(y),

∫
dy

h(y)
= x + C

Example. y′ = y2, y(0) = 2, then − 1
y = x + c, since y(0) = 2, c = − 1

2 , y = 2
1−2x

Natural growth equations.

dx

dt
= kx, then x(t) = x0e

kt.

Example 3 page 579. P (0) = 6 × 109, P ′(0) = 212, 000 × 365.25,

(a) k =?, (b) P (50) =?, (c) P (?) = 60 × 109.

Half life.
dN

dt
= −kN,

then

N(t) = N0e
−kt,

1
2
N0 = N0e

−kτ , τ =
ln 2
k

.
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Torricelle’s Law. page 583

v =
√

2gy,A(y)dy = dV = −avdt = −a
√

2gydt,

so

y′ = −k

√
y

A(y)
, k = a

√
2g

Example.

(1) Example 8 page 584 A(y) = A, y(0) = 10, y(1) = 5, y(?) = 0,
(2) Example 9 page 584 A(y) = π(42 − y2), π(42 − y2)y′ = −π( 1

24 )2
√

64y,

32y1/2 − 2
5
y5/2 = − 1

72
t + C.

8.2 Slope Field and Euler Method

8.3 Separable Equations and Applications

y′ = g(x)h(y), f(y)y′ = g(x),
∫

f(y)dy =
∫

g(x)dx.

Example.

(1) y′ = −6xy, (a)y(0) = 7, (b)y(0) = −4,
(2) y′ = 6x(y − 1)2/3,
(3) y′ = 4−2x

3y2−5 , y(1) = 3.

Heating and Cooling.

du

dt
= −k(u − A),− ln |u − A| = kt + C

Example 4 pag 602 u(0) = 50.A = 375, u(75) = 125, u(?) = 150

8.4 Linear Equations and Applications

y′ + P (x)y = Q(x)

Example. x3y′ + xy = 2x3 + 1
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Integration factor.

I(x) =
∫

P (x)dx,

eI(x)y′ + eI(x)P (x)y = eI(x)Q(x),

eI(x)y =
∫

eI(x)Q(x)dx

Example.
(1) y′ − y = 11

8 e−x/3, y(0) = 0,
(2) (x2 + 1)y′ + 3xy = 6x.

In initial value problem, we can let

I(x) =
∫ x

x0

P (t)dt,

then
y(x) = e−I(x)

∫ x

x0

eI(t)Q(t)dt + y0.

Example. x2y′ + xy = sinx, y(1) = y1.

Mixed Problem. page 612

x′ = rici − r0
x(t)
V (t)

Example.
(1) Example 5 page 613 V = 480, ri = r0 = 350, c(0) = 5c, c(?) = 2c,

x(t) = cV + 4cV e−
r
V t.

(2) Example 6 page 614 x(0) = 90, V (0) = 90, ci = 2, ri = 4, r0 = 3,
V (t1) = 120, x(t1) =?

Motion with resistance.
dv

dt
= −g − kv

Example. k = 0.16, v(0) = 160
(a) yM =?, (b) y(t1) = yM , (c) v(t2) =? Exerciae 32, 34, 36 page 619

v′ = −kv,

v′ = −kv2,

v′ = −kv3/2.
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8. Population Model

dP

dt
= β(t)P − δ(t)P,

where β(t0 is the birth rate and δ(t) is the death rate.

β(t) ≡ β0.
dP

dt
= (β0 − δ0)P,

is the natural growth equation.

P (t) = P (t0)e(β0−δ0)(t−t0).

β(t) = βP9t), δ(t) ≡ 0..
dP

dt
= βP 2.

P (t) =
P (0)

1 − βP (0)t
.

Example (1) page 620, β = 0.0005, P (0) = 100,

P (t) =
2000
20 − t

,

P (t) → ∞ as t → 20−.

Bounde Population, Logistic equation β(t) = β0 − β1P (t), δ(t) = δ..

dP

dt
= (β0 − β1P − δ)P = kP (M − P ),

where k = β1,M = β0−δ
β1

.

P (t) =
MP (0)

P (0) + (M − P (0))e−kMt
.

Reamrk.
(1) If P (0) = M then P (t) = M .
(2) If P (0) < M then P (t) < M and limt→∞P (t) = M ,
(3) If P (0) > M then P (t) > M and limt→∞P (t) = M .

M is the limit population and sometimes called the carrying capacity of the envirment.

Example 2 page 621. k = 0.0004,M = 150, then

P (t) =
150P (0)

P (0) + (M − P (0))e−0.06t
.

Example 3 page 623, P (1885) = 50 × (10)6, P ′(1885) = 0.75 × (10)6, P (1940) = 100 ×
(10)6, P ′(1940) = (10)6. Then k = (10)−4,M = 200 × (10)6 and

P (t) =
(200 × (10)6)(100 × (10)6)

100 × (10)6 + (100 × (10)6e−0.02t
.
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Doomsday versus Extinction, β(t) = kP ,δ(t) = δ..

dP

dt
= kP (P − M).

P9t) =
MP (0)e−kmt

P (0)e−kMt − (P (0) − M)
.

Example 7 page 625, k = 0.0004,M = 150 (a) P (0) = 200. (b) P (0) = 100.

8.6 Linear Second Order Equations

A(x)y′′ + B(x)y′ + C(x)y = F (x).

Homogeneous Equations.

A(x)y′′ + B(x)y′ + C(x)y = 0 (H.)

Theorem. If y1, y2 are solution of (H), then y = c1y1 + c2y2 is also a solution of (H)

Remark.The correspondence y → (y(x0), y′(x0)), which preserve the linear structure , by
the uniquence of the solution of the initial value problem, is an isomorphism between the
solution space of (H) and R2. Two solutions y1, y2 of (H) is said to be independent if
y1 �= cy2 for any c ∈ R as a function of x.

Example. x2y′′ + 2xy′ − 6y = 0, y1 = x2, y2 = x−3, y(1) = 10, y′(1) = 5.

Theorem. If y1, y2 are two indefendent solutions of (H), then any solution y of (H) can
be wriiten as y = c1yc + c2y2 in an unique way.

Constant Coefficients Equations.

ay′′ + by′ + cy = 0,

with characteristic polynomial
aλ2 + bλ + c = 0 (*)

(A) If (∗) has two distinct real roots λ1, λ2, then eλ1x, eλ2x are independent solutions .

Example.
(1) 3y′′ + 7y′ + 2y = 0,
(2) 5y′′ − 2y = 0,
(3) y′′ − 4y = 0, cosh2x, sinh 2x

(B) If (∗) has double real; roots λ, then eλx, xeλx are independent solutions.

Example. 4y′′ + 12y′ + 9y = 0, y(0) = 4, y′(0) = −3.
(C) If (∗) has complex conjugate roots p ± iq, then bu Euler identity

eiu = cos u + i sin u,
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epx cos qx, epx sin qx are independent solutions.

Example.
(1) y′′ + 4y = 0,
(2) 9y′′ + 6y′ + 325y = 0, y(0) = 12, y′(0) = 325.

Particular solution of the inhomogeneous equation.

ay′′ + by′ + cy = f(x).

(1) If f(x) = a0x
n + · · · + an, then if c �= 0 yp(x) = b0x

n + · · · + bn, if c = 0 but b �= 0
yp(x) = b0x

n+1 + · · · + bn+1

(2) If f(x) = cos ωx or f(x) = sin ωx and iω is not a root of (*), then yp(x) =
α cos ωx + β sinωx.

(3) If f(x) = cos ωx or f(x) = sinωx and iω is a root of (*), then yp(x) = αx cos ω +
βx sin ω.

(4) If f(x) = eλx and λ is not a root of (*), then yp(x) = ceλx.
(5) If f(x) = eλx and λ is a simple root of (*), then yp(x) = cxeλx.
(6) If f(x) = eλx and λ is a double root of (*), then yp(x) = cx2eλx.

Example.
(1) y′′ + 2y = x2 + 1, y(0) = 2, y′(0) = 4,
(2) y′′(x) + 4y = sin2x, y(0) = 1, y′(0) = 2,
(3) y′′ − 4y = e2x, y(0) = 3, y′(0) = 5.

8.7 Mechanical Vibration

Force of the spring FS = −kx
Force of the resistance FR = −cv
External force FE = F (t)
Total force FT = FS + FR + FE

Newton’s law FT = ma, so the mathematical model is mx′′ + cx′ + kx = F (t).

Free Undamped Motion.
mx′′ + kx = 0.

The general solution is

x(t) = A cos

√
k

m
t + B sin

√
k

m
t.

ω0 =
√

k
m is the circular frequency. C =

√
A2 + B2 is the amptitute,

x(t) = C cos(ω0t − α)

, α is the phase angle, cos α = A
C , sinα = B

C , T = 2π
ω0

is the period and v = 1
T is the

frequency.
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Example.
(1) on page 642. m = 1

2kg, 100 = k2, k = 50, x(0) = 1
2 , x′(0) = 0. x′′ +100x = 0, x(t) =

1
2 cos 10t.

(2) on page 643 as in (1) x′(0) = −10, A = 1
2 , B = −1, C =

√
5/2, , cos α = 1√

5
, sinα =

− 2√
5
, T = 2π

10 , α = 2π − tan−1 2.

Free Damped Motion.
mx′′ + cx′ + kx = 0.

(A) Over Damped. c2 − 4km > 0, , p1 = − c+
√

c2−4km
2m p2 = − c−√

c2−4km
2m

x(t) = c1e
−p1t + c2e

−p2 .

(B) Critical Damped. c2 − 4km = 0, p = c
2m

x(t) = c1e
−pt + c2te

−pt.

(C) Under Damped. c2 − 4km < 0, r = − c
2m ± i

√
k
m − ( c

2m )2, p = c
2m , ω1 =

√
ω2

0 − p2.

x(t) = e−pt(A cos ω1t + B sin ω1t) = e−ptC(cos ω1t − α1),

ω1 is the citcular frequency, T1 = 2π
ω1

is the pseudo period, Ce−pt is the time verying
amptitute.

Example. (3) page 645. As in (2) c = 6, x(0) = 1
2
, x′(0) = −10,

x′′ + 12x′ + 100x = 0

r = −6±8i, x(t) = e−6t(A cos 8t+B sin 8t), x(0) = 1
2
, A = 1

2
, x′(0) = −10 = −6A+8B,B =

− 7
8 , C =

√
65
8 , T1 = 2π

8 , α = 2π − tan−1 7
16 .

Forced Oscillation. F (t) �= 0,

mx′′ + cx′ + kx = F0 cos ωt

xp(t) = A cos ωt + B sinωt, x(t) = xe(t) + xp(t).

Example.(4) of page 647. m = 1, c = 0, k = 9, F0 = 80, ω = 5

x′′ + 9x = 80 cos 5t, x(0) = x′(0) = 0.

(5) of page 648

m = 1, c = 2, k = 26, F0 = 82, ω = 4, x(0) = 6, x′(0) = 0.


