CHAPTER 8, DIFFERENTIAL EQUATIONS

8.1 SIMPLE DIFFERENTIAL EQUATIONS AND MODEL
Initial value problem.

d
S =Flay).  yleo) =
€T

Theorem. Suppose that F' satisfied the Lipshitz condition,

|F(.ﬁl§',y) - F(xlay/” S C\/(Z’ - x/)Q + (y - y/)Qa

for some fixed C, then the initial value problem has unique local solutuon.

In case one variable is missing.

d
missiing y % =g(x), ylr)= /g(:z:)d:z: +C

d d
missing =« % = h(y), /WZ) =z+C

Example. y' = %, y(0) = 2, then —% =z + ¢, since y(0) = 2,¢c =

Natural growth equations.

d
d—f = kz, then x(t) = zoe™.

Example 3 page 579. P(0) = 6 x 10%, P’(0) = 212,000 x 365.25,
(a) k=7, (b) P(50) =7, (c) P(?) =60 x 10°.

Half life.
dN
&~ kN
dt ’
then
1 In2
N(t) = Noe ™, S No = Noe 7,7 = HT
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Torricelle’s Law. page 583

= /29y, A(y)dy = dV = —avdt = —a~/2gydt,

SO

VY
—km,k —(1,\/%

Example.
(1) Example 8 page 584 A(y) = A y( ) =10,y(1) =5,y(?) =0,
(2) Example 9 page 584 A(y) = m(4% — y?),7(4%> —y?)y = (%1) /64y,

2 1
32y1/2 — gy5/2 = _it +C.

8.2 SLOPE FIELD AND EULER METHOD

8.3 SEPARABLE EQUATIONS AND APPLICATIONS

Y = g(x)h(y), fly)y = g(:v),/f(y)dy = /g(:v)dx-

Example.
(1) ¢y = —ny, (a)y(0) =
(2) ¥ = 6a(y — 1)*/?,
(3) y/ = 4223:5’y(1) 3.

7,(0)y(0) = —4,

Heating and Cooling.

d

o k(u—A),—lnfu— Al =kt+C
dt

Example 4 pag 602 u(0) = 50.A = 375, u(75) = 125, u(?) = 150

8.4 LINEAR EQUATIONS AND APPLICATIONS

y' + Px)y = Qx)

Example. 23y’ + 2y = 223 + 1
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Integration factor.

@y + el P(a)y = e DQz),

el @y = /eI(I)Q(:U)dx

Example.
(1) y —y=Fe ™3 y(0) =0,
(2) (z* + 1)y + 3zy = 6.

In initial value problem, we can let

T

I(x) :/ P(t)dt,

0

then i
a) =1 [ OG0+
o
Example. 2%y’ + zy = sinz, y(1) = y;.
Mixed Problem. page 612

Example.

(1) Example 5 page 613 V = 480, r; = ro = 350, ¢(0) = 5¢, ¢(?) = 2c,

z(t) =V +4cVe VE

(2) Example 6 page 614 z(0) = 90,V(0)

= = 90,01‘ = 2,7“1'
V(ty) = 120, 2(t) =7

= 47T0

Motion with resistance.

dv

— g—k
a9

160
ym, (c) v(t2) =7 Exerciae 32, 34, 36 page 619

Example. k = 0.16,v(0)
(a) yar =7, (b) y(t1) =

v = —kv,

v = —kv?,

v = —kv/2,
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8. PorPuLATION MODEL

P
— =p[{)P —4(t)P.
where 3(t0 is the birth rate and J(¢) is the death rate.
ﬁ(t) = ﬁo. ip
— = —d0)P

is the natural growth equation.
P(t) = P(tg)ePo—d0)(t=t0)

B(t) = BPYL), 8(t) = 0..

— = BP2
dt p

P(0)
~ 1-BP(0)t
Example (1) page 620, 3 = 0.0005, P(0) = 100,
2000
20—t

P(t)

P(t)

P(t) - occast—20".
Bounde Population, Logistic equation ((t) = o — (1 P(t),(t) = 4..

% = (B0 — P — 6)P = kP(M — P),
where k = 1, M = ﬁog—:é-
- MP(0)
P(t) = P(0) + (M — P(0))e kMt
Reamrk.

(1) If P(0) = M then P(t) = M.
(2) If P(0) < M then P(t) < M and lim;—.P(t) = M,
(3) If P(0) > M then P(t) > M and lim;_.P(t) = M.
M is the limit population and sometimes called the carrying capacity of the envirment.
Example 2 page 621. £ = 0.0004, M = 150, then
150P(0)
P(0) + (M — P(0))e—0-06t"
Example 3 page 623, P(1885) = 50 x (10)¢, P/(1885) = 0.75 x (10)¢, P(1940) = 100 x
(10)8, P'(1940) = (10)%. Then k = (10)~*, M = 200 x (10)® and
~ (200 x (10)%)(100 x (10)°)
100 x (10)6 + (100 x (10)6e—0-02¢"

P(t) =

P(t)
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Doomsday versus Extinction, §(t) = kP0(t) = 4..

dP
B MP(0)eFm
P = Pje = — (P(0) = M)

Example 7 page 625, k = 0.0004, M = 150 (a) P(0) = 200. (b) P(0) = 100.

8.6 LINEAR SECOND ORDER EQUATIONS

A(z)y"” + B(z)y' + C(x)y = F(x).

Homogeneous Equations.

A(z)y" + B(x)y' + C(z)y =0 (H.)
Theorem. If y;,ys are solution of (H), then y = c1y1 + cay2 is also a solution of (H)

Remark.The correspondence y — (y(xo), 3’ (x0)), which preserve the linear structure , by
the uniquence of the solution of the initial value problem, is an isomorphism between the
solution space of (H) and R%. Two solutions y;,y2 of (H) is said to be independent if
y1 # cyo for any ¢ € R as a function of x.

Example. 2%y” + 2zy’ — 6y = 0,11 = 22,52 = 273,y(1) = 10,9/(1) = 5.

Theorem. If y;,ys are two indefendent solutions of (H), then any solution y of (H) can
be wriiten as y = c1y. + C2¥y2 In an unique way.

Constant Coefficients Equations.
ay” + by’ +cy =0,
with characteristic polynomial
al? + b\ +c=0 (*)
(A) If () has two distinct real roots A1, A2, then e*1% e*2% are independent solutions .
Example.
(1) 3y" + 7y +2y =0,

(2) 5y’ —2y =0,
(3) y"" — 4y = 0, cosh 2z, sinh 2z
If

(B)

Example. 4y"” + 12y + 9y = 0,y(0) = 4,4/(0) = —3.
(C) If (*) has complex conjugate roots p £ ig, then bu Euler identity

(¥) has double real; roots ), then e** xe** are independent solutions.

e’ = cosu + isinu,
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eP? cos qx, eP” sin qx are independent solutions.

Example.

(1) ¥ + 4y =0,
(2) 9y + 6y + 325y = 0,4(0) = 12,4/ (0) = 325.

Particular solution of the inhomogeneous equation.

Y+ by + cy = f(x).

(1) If f(x) = apx™ + -+ - + ap, then if ¢ # 0 yp(x) = boz™ + - + by, if c=0Dbut b #0
Yp(z) = box™ Tt + - + by

(2) If f(z) = coswzx or f(r) = sinwz and iw is not a root of (*), then y,(x) =
acoswzx + Bsinwe.

(3) If f(x) = coswzx or f(r) = sinwx and iw is a root of (*), then y,(x) = arcosw +

Bxsinw.
(4) If f(z) = e z and \ is not a root of (*), then y,(x) = ce’®.
(5) If f(z) = e z and \ is a simple root of (*), then y,(z) = cre®.
(6) If f(x) = e’ and A is a double root of (*), then y,(x) = cx?e’®.
Example.

(1) ¥ +2y = 2" +1,5(0) =2,5/(0) = 4,
(2) y ( )+4y—81n2x y(0) =1
(3) ¥ — 4y = €**,y(0) = 3,4/ (0) = 5.

8.7 MECHANICAL VIBRATION

Force of the spring Fs = —kx

Force of the resistance F'r = —cv

External force Fp = F(t)

Total force Fr = Fg + Fr + Fg

Newton’s law Fr = ma, so the mathematical model is ma” + ca’ + kx = F(t).

Free Undamped Motion.
ma’ + kx = 0.

ZACOS\/Et-i—BSinHEt.
m m

wo = 1/ % is the circular frequency. C' = v/ A? + B2 is the amptitute,

The general solution is

x(t) = C cos(wpt — )

, « is the phase angle, cosa = %,sina = %, T = i—g is the period and v = % is the
frequency.
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Example.
1) on page 642. m = 1kg,100 = k2, k = 50, z(0
2

2,2/(0) = 0. 2"+ 100z = 0, z(t) =

%colet.
(2) on page 643 asin (1) 2/(0) = —10,A =1, B=—1,C =/5/2,,cosa = %,sina =

2T o = 21 — tan— L 2.

2 _
_%7 T= 10
Free Damped Motion.
ma” + cx’ + kx = 0.
V2 —4km Py = _c—Vc2—4km
- 2m

(A) Over Damped. ¢* —4km > 0, , p; = — <=

2(t) = cre Pt 4 coe P2,

(B) Critical Damped. ¢ —4km =0, p = 5=
x(t) = cre Pt 4 cotePE,

_(ﬁ)Zap: ﬁawl: wg_pZ'

C) Under Damped. ¢ —4km < 0, r = —% £,/ &
2m m

z(t) = e P (Acoswit + Bsinwt) = e P'C(coswit — ),
wy is the citcular frequency, T} = i—? is the pseudo period, Ce™P! is the time verying
amptitute.

Example. (3) page 645. As in (2) ¢ = 6,z(0) = 1,2/(0) = —10,

—648i, 2(t) = e % (Acos 8t+Bsin8t), #(0) = 3, A = 5,2/(0) = —10 = —6A+8B, B =

7

r
_ /65 _2r -1
C=T =5, a=2r—tan " {.

_TI
8
Forced Oscillation. F(t) # 0,

maz' + cx’ + kx = Fycoswt

xp(t) = Acoswt + Bsinwt, z(t) = ze(t) + zp(1).

Example.(4) of page 647. m =1,¢ =0,k =9,Fy =80,w =5
2" + 92 = 80 cos 5t, 2(0) = 2/(0) = 0.

(5) of page 648
m=1,c=2k=26,F =82,w=4,2(0) =6,2'(0) = 0.



