CHAPTER 5, THE INTEGRAL

5.2 ANTIDERIVATIVE AND INITIAL VALUE PROBLEM

Differential Equations.

Example.
(1) 4 = k(T ~ )

(3) G = kv

Antiderivative and Indefinit integral. F is a antiderivative of f if F’ = f. Indefinite
integral [ fdxz = F(x) + Cis the general form of antiderivatives.

Example.
(1) f(x) =322, F(z) =23 + C,
(2) [lde=2+C,
(3) [2zdz =2* + C,
(4) [a3de = 1a* + C,
(5) [cosaxdx =sinz + C,
(6) [sin2zdx = —% cos2z + C,
(7) [ +3v7 -
8) [( 20083t+581n4t+367t)d
9) [( 93+5 mdas
(10)

f (4— 51‘)3

Initial Value Problem. % = f(z),y(0) = yo

dx
Example.
(1) 3 =32y(0) =2,
(2) g—z =2z +3,y(1) = 3.

Rectilinear Motion.

(1) =(t) position,

(2) v(t) velocity,

(3) a(t) acceleration,
(4) z(0) = zp,v(0) = vo.

Example. a(t) = 12t,2(0) = 10,v(0) =0
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Constant acceleration Motion.
(1) a(t) = a,
(2) v(t) = at + vy,
(3) z(t) = Lat? + vot + .

Example.
(1) a(t) = —20,z(0) = 0,z(t1) = 160,v(t1) = 0,v(0) =7
(2) g = _327y(0) - an(20) = Oav(tl) = an(tl) =

5.3 ELEMENTARY AREA COMPUTATION

Summation formula.

n n(n+1
) 2k = ((2++)132 +1)
(2) 37 k2 = %,

(3) 21 k3 — (n+1)

Example.
(1) f(z) = 2?,[0,5],
(2) 1°<7k2—5k>
(3) lim,— +n tn
(@) f(z) = 100 322, [1, 5]

5.4 RIEMANN SUM AND INTEGRAL

Definition. A partition P = {a = 9 < 1 < -+ < ®p_1 < z, = b} is a list of real
numbers with increasing order. When you add some real numbers to a partition and then
list it in increasing order, you get a new partition, which is called a refinement.

Riemann Sum. f is a bounded function on [a,b]. P ={a =290 <21 < -+ < Tp_1 <
T, = b} is a partition of [a,b] and z} € [zj—1,25],j = 1,2,--- ,n is a selection, and let
Aa:j =T —Tj-1, |P| = maXAa:j.

Zf s (*)

is a Riemann sum of f on [a,b], and

) if x5 = ;-1 (*) is the left sum Ry (f) ,

) if x5 = x; (*) is the right sum Rg(f),

) ifaf = Li=1¥2i (%) js the mid sum Ry (f),

4) Up =37 ( x;) Az, f(x]) = Llub.ecle,_, 2,f () is the upper sum ,
5) Lp =Y 3 f(a})Axy, f(x}) = g81b. e, 2, f(2) is the lower sum .

—

2

N N N /N
w

Remark. If P’ is a refinement of P, then Up(f) > Up/(f) and Lp(f) < Lp/(f).
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Riemann Integral. The definite integral of f from a to b is the number

I= lim > f(z})Ax;

|P|—0

j
provided the limit exist, in this case, we say that f is integrable on |a,b] and write

= / ' Hade

the definite integral of f on [a,b].

Here I = limjp|_o>_; f(2})Az; means that for any e > 0 there exists d(e) > 0 such
that |P| < ¢ implies |Rp(f) — I| < e.
Theorem. f is integrable on |a,b] iff for any € > 0 there exists §(¢) > 0 such that |P| < ¢
implies |Up — Lp| < e.

Proof. Necessary: Assume f is integrable, given € > 0, there is § > 0 such that for any
partition P with |P| < §, we have

b
Rp(f) - / fla)da] < 5.

Which implies that |[Up(f) — Lp(f)] < e.

Sufficient : Since Up(f) > L’s(f)| for all partitions P, P’, {Up(f)}is a set of real number
bounded from below, hence has a g.1.b Iy , and similarly {Lp(f)} has a l.u.b. I . From
the assumption, given € > 0, there is a § , any partition P with |P| < d, we have

Iy — I, < Up(f) —Lp(f) < €.

Since this inequality is true for all € > 0, we get Iy = I, and let us call this common value
I. Now we show that the definit integral of f from a to b is I. Given € > 0 , choose a ¢
such that Up(f) — Lp(f) < € whenever |P| < §. Then we have

Rp(f) =1 <Up(f) =1 <Up(f) — Lp(f)
Rp(f) =1 = Lp(f) =1 = Lp(f) = Up(f)
hence
|Rp(f) —I| < Up(f) — Lp(f) <e
Theorem. If f is monotone on [a,b], then f is integrable on [a,b] .
Theorem. If f is continuous on |a,b], then f is integrable on [a,b] .

Uniform Continuous. f is uniformly continuous on [a, b] if for any € > 0 there is § > 0
such that for x,y € [a,b] and |x —y| < § then |f(z) — f(y)| <e.

Theorem. If f is continuous on |a,b] then f is uniformly continuous on |a, b].

Example.
(1) f04 2% — 2xdz,
(2) f: xdx,
(3) fob erdr.
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5,4 5.6 EVALUATION OF INTEGRALS AND FUNDAMENTAL THEOREM OF CALCULUS

Elementary Properties of Definite Integrals.

(1) If f, g are integrable on [a,b], the af + (g is integrable on [a,b] and

/ab(af + B9)(z)dz = « /b f(x)dx + ﬁ/bg(w)dx

(2) If f is integrable on [a,b] and on [b, c|, then f is integrable on [a,c| and

/f da:—/f dx-i—/f

(3) If f is integrable on [a,b] and f(z) > 0 on |a,b], then fa f(z)dz > 0.

(4) If f, g are integrable on [a, b] and f(x) > g(x) on [a,b], then f; f(z)dxr > f:g(a:)da:
(5) If f is integrable on [a,b] and m < f(x) < M on [a,b], then

1 b
< <M
m < b—a/a f(x)dx <

(6) If f is continuous on [a,b] , then f; f(z)dz = f(c) for some c € [a,b]. (This is
the mean value theorem of integral.)

Theorem. (Fundamenta] Theorem of Calculus) Suppose that f is continuous on [a, b).
(1) Define F(z) = [ f(t)dt for x € [a,b], then F'(z) = f(z).
(2) If G’ = f on [a,b, then f: f(z)dr = G(b) — G(a).

1) fob x"dz,

cos xdz,

233 — 272 — 3)du, fo (2x + 3)3dx, fo sin 2zdz, fo e?*dx,
m

0) = 100 P’( ) =10+t + 0.06t2, P(10) =7,

lim,,— oo Z =,

:gbjb 2

fo | cosz — 81n33|dx

)
)
)
)
)
)
)
9) VIt </1+&<1240.220n [0,1], estimate [, /T + /zdz.
)
)
)
)
)
)

Average x? over [0, 2],

7r/2

(x) = cosz,x >0,—-1—222<0,["] )dx,

f

Find the area between the graph of 23 — 22 — 62 and the z-axis,
f_21 |3 — a:|dx,
h
Y

"=7 h(x fo 3 sin tdt,
= secz, y( ) =yo + [, sectdt.
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5.7 INTEGRATION BY SUBSTITUTION

Indefinite Integral. Suppose that F' = f then dF(g(x))/dx = f(g(x))g’ (x), hence

/ f(g(x))g (x)dz = F(g(x)) + C

Example.
(1) [(2z+ 1)°2dx,
2) [22vV1+ 2%dz, [ A=,
[ 2?23 + 9dx,
[ sin(3z + 4)dz,
[ 3z cos x?dz,

)
)
)
) [ sec? 3xdx,
)
)

[ 2sin® z cos zdx,

8) [3vze™Veldy, [ VT gy

(

(3
(4
(5
(6
(7
( 14+Vaz3

Definite Integral.

b g(b)
/ F(9(2))g' (@)dz = F(g(b)) — F(g(a)) = / £(u)du.

Example.
(1) f03932\/933+9d93,
5 xrax
(2) f3 (30_%2)27
(3) foz cos 2x dx.

1+sin2x

5.8 AREA OF PLANE REGION

/a ' f(a) - g(a)da.

Example.

(1) y:x,x:2,y:x%,
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5.9 NUMERICAL INTEGRATION
L, = Z%qﬁxi,
R, = Z yi Ax;,

M, = Z%—1/2A33i7

Trapezoidal
Yi—1 + Vi
T, = — Ay,
2
Simpson
1 (b—a)
Sn = g(yo +4yr +2y2 +4yz + -+ 4Yn—1 + Yn) o
, n 1s even.

Error Estimates.

(1)

_ Ka(b—a)®
(2) ETn = 452,

_ Ky(b—a)®
(3) EM, = i2(4n2)5 ’
Ki(b—a
(4) ESn = =g
Remark.

(1) When K5 =0 f is a linear function, then both ET,, and EM,, are 0.
(2) When K4 =0, f is a polynomial of degree three, then ES,, = 0.






