CHAPTER 5, THE INTEGRAL

5.2 Antiderivative and Initial Value Problem

Differential Equations.

Example.

- $\begin{array}{ll} (1) & \frac{dT}{dt} = -k(T-A), \\ (2) & \frac{dP}{dt} = kP, \\ (3) & \frac{dy}{dt} = -k\sqrt{y}. \end{array}$

Antiderivative and Indefinit integral. F is a antiderivative of f if F' = f. Indefinite integral $\int f dx = F(x) + C$ is the general form of antiderivatives.

Example.

- (1) $f(x) = 3x^2$, $F(x) = x^3 + C$,
- (2) $\int 1 dx = x + C$,
- (3) $\int 2x dx = x^2 + C$,
- (4) $\int x^3 dx = \frac{1}{4}x^4 + C$,
- $(5) \int \cos x dx = \sin x + C,$
- (6) $\int \sin 2x dx = -\frac{1}{2} \cos 2x + C$, (7) $\int x^3 + 3\sqrt{x} \frac{4}{x^2} dx$
- (8) $\int (2\cos 3t + 5\sin 4t + 3e^{7t})dt$,
- (9) $\int (x+5)^{10} dx$, (10) $\int \frac{20}{(4-5x)^3} dx$.

Initial Value Problem. $\frac{dy}{dx} = f(x), y(0) = y_0$

Example.

- (1) $\frac{dy}{dx} = 3x^2, y(0) = 2,$ (2) $\frac{dy}{dx} = 2x + 3, y(1) = 3.$

Rectilinear Motion.

- (1) x(t) position,
- (2) v(t) velocity,
- (3) a(t) acceleration,
- (4) $x(0) = x_0, v(0) = v_0.$

Example. a(t) = 12t, x(0) = 10, v(0) = 0

Constant acceleration Motion.

- $(1) \ a(t) = a,$
- (2) $v(t) = at + v_0$,
- (3) $x(t) = \frac{1}{2}at^2 + v_0t + x_0$.

Example.

- (1) $a(t) = -20, x(0) = 0, x(t_1) = 160, v(t_1) = 0, v(0) = ?$
- (2) $q = -32, y(0) = 0, y(20) = 0, v(t_1) = 0, y(t_1) = ?$

5.3 Elementary Area Computation

Summation formula.

- (1) $\sum_{1}^{n} k = \frac{n(n+1)}{2}$, (2) $\sum_{1}^{n} k^{2} = \frac{n(n+1)2n+1}{6}$, (3) $\sum_{1}^{n} k^{3} = \frac{n^{2}(n+1)^{2}}{4}$.

Example.

- (1) $f(x) = x^2, [0, 5],$ (2) $\sum_{1}^{10} (7k^2 5k),$ (3) $\lim_{n \to \infty} \frac{1 + \dots + n}{n^2},$ (4) $f(x) = 100 3x^2, [1, 5].$

5.4 RIEMANN SUM AND INTEGRAL

Definition. A partition $P = \{a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b\}$ is a list of real numbers with increasing order. When you add some real numbers to a partition and then list it in increasing order, you get a new partition, which is called a refinement.

Riemann Sum. f is a bounded function on [a,b]. $P = \{a = x_0 < x_1 < \cdots < x_{n-1} < \cdots < x_{n-1} < \cdots < x_n < x_n < \cdots < x_n < \cdots < x_n < x_n < \cdots < x_n < x_n < \cdots < x_n <$ $x_n = b$ is a partition of [a, b] and $x_j^* \in [x_{j-1}, x_j], j = 1, 2, \dots, n$ is a selection, and let $\triangle x_i = x_i - x_{i-1}, |P| = \max \triangle x_i.$

$$R_P(f) = \sum_{1}^{n} f(x_j^*) \triangle x_j \tag{*}$$

is a Riemann sum of f on [a,b], and

- (1) if $x_j^* = x_{j-1}$ (*) is the left sum $R_L(f)$,
- (2) if $x_j^* = x_j$ (*) is the right sum $R_R(f)$, (3) if $x_j^* = \frac{x_{j-1} + x_j}{2}$ (*) is the mid sum $R_M(f)$,
- (4) $U_P = \sum_{1}^{n} f(x_j^*) \triangle x_j, f(x_j^*) = \mathbf{l.u.b.}_{x \in [x_{j-1}, x_j]} f(x)$ is the upper sum, (5) $L_P = \sum_{1}^{n} f(x_j^*) \triangle x_j, f(x_j^*) = \mathbf{g.l.b.}_{x \in [x_{j-1}, x_j]} f(x)$ is the lower sum.

Remark. If P' is a refinement of P, then $U_P(f) \geq U_{P'}(f)$ and $L_P(f) \leq L_{P'}(f)$.

Riemann Integral. The definite integral of f from a to b is the number

$$I = \lim_{|P| \to 0} \sum_{j} f(x_j^*) \triangle x_j$$

provided the limit exist, in this case, we say that f is integrable on [a,b] and write

$$I = \int_{a}^{b} f(x)dx$$

the definite integral of f on [a, b].

Here $I = \lim_{|P| \to 0} \sum_j f(x_j^*) \dot{\triangle} x_j$ means that for any $\epsilon > 0$ there exists $\delta(\epsilon) > 0$ such that $|P| < \delta$ implies $|R_P(f) - I| < \epsilon$.

Theorem. f is integrable on [a, b] iff for any $\epsilon > 0$ there exists $\delta(\epsilon) > 0$ such that $|P| < \delta$ implies $|U_P - L_P| < \epsilon$.

Proof. Necessary: Assume f is integrable, given $\epsilon > 0$, there is $\delta > 0$ such that for any partition P with $|P| < \delta$, we have

$$|R_P(f) - \int_a^b f(x)dx| < \frac{\epsilon}{2}.$$

Which implies that $|U_P(f) - L_P(f)| < \epsilon$.

Sufficient: Since $U_P(f) \geq L'_P(f)$ for all partitions $P, P', \{U_P(f)\}$ is a set of real number bounded from below, hence has a g.l.b I_U , and similarly $\{L_P(f)\}$ has a l.u.b. I_L . From the assumption, given $\epsilon > 0$, there is a δ , any partition P with $|P| < \delta$, we have

$$I_U - I_L \le U_P(f) - L_P(f) < \epsilon.$$

Since this inequality is true for all $\epsilon > 0$, we get $I_U = I_L$ and let us call this common value I. Now we show that the definit integral of f from a to b is I. Given $\epsilon > 0$, choose a δ such that $U_{\mathbf{P}}(f) - L_{\mathbf{P}}(f) < \epsilon$ whenever $|P| < \delta$. Then we have

$$R_P(f) - I \le U_P(f) - I \le U_P(f) - L_P(f)$$

$$R_P(f) - I \ge L_P(f) - I \ge L_P(f) - U_P(f)$$

hence

$$|R_P(f) - I| \le U_P(f) - L_P(f) < \epsilon.$$

Theorem. If f is monotone on [a,b], then f is integrable on [a,b].

Theorem. If f is continuous on [a,b], then f is integrable on [a,b].

Uniform Continuous. f is uniformly continuous on [a, b] if for any $\epsilon > 0$ there is $\delta > 0$ such that for $x, y \in [a, b]$ and $|x - y| < \delta$ then $|f(x) - f(y)| < \epsilon$.

Theorem. If f is continuous on [a, b] then f is uniformly continuous on [a, b].

Example.

- (1) $\int_0^4 x^3 2x dx$, (2) $\int_a^b x dx$, (3) $\int_0^b e^x dx$.

4

5,4 5.6 Evaluation of integrals and Fundamental theorem of Calculus

Elementary Properties of Definite Integrals.

(1) If f, g are integrable on [a, b], the $\alpha f + \beta g$ is integrable on [a, b] and

$$\int_{a}^{b} (\alpha f + \beta g)(x) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx.$$

(2) If f is integrable on [a, b] and on [b, c], then f is integrable on [a, c] and

$$\int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx.$$

- (3) If f is integrable on [a,b] and $f(x) \ge 0$ on [a,b], then $\int_a^b f(x)dx \ge 0$.
- (4) If f, g are integrable on [a, b] and $f(x) \ge g(x)$ on [a, b], then $\int_a^b f(x) dx \ge \int_a^b g(x) dx$. (5) If f is integrable on [a, b] and $m \le f(x) \le M$ on [a, b], then

$$m \le \frac{1}{b-a} \int_a^b f(x) dx \le M$$

(6) If f is continuous on [a,b], then $\frac{1}{b-a}\int_a^b f(x)dx=f(c)$ for some $c\in[a,b]$. (This is the mean value theorem of integral.)

Theorem. (Fundamental Theorem of Calculus) Suppose that f is continuous on [a, b].

- (1) Define $F(x) = \int_a^x f(t)dt$ for $x \in [a,b]$, then F'(x) = f(x).
- (2) If G' = f on [a, b], then $\int_a^b f(x) dx = G(b) G(a)$.

Example.

- (1) $\int_0^b x^n dx$,
- (2) $\int_{a}^{b} \cos x dx,$
- (3) $\int_{1}^{9} (2x x^{-\frac{1}{2}} 3) dx$, $\int_{0}^{1} (2x + 3)^{3} dx$, $\int_{0}^{\frac{\pi}{2}} \sin 2x dx$, $\int_{0}^{1} e^{2x} dx$, (4) $\int_{1}^{5} \sqrt{3x + 1} dx$,
- (5) $P(0) = 100, P'(t) = 10 + t + 0.06t^2, P(10) =?$
- (6) $\lim_{n\to\infty}\sum \frac{2i}{n^2}$,
- (7) $\int_{-1}^{1} 2|x|dx$,
- (8) $\int_0^{2\pi} |\cos x \sin x| dx$, (9) $\sqrt{1+x} \le \sqrt{1+\sqrt{x}} \le 1.2 + 0.2x$ on [0, 1], estimate $\int_0^1 \sqrt{1+\sqrt{x}} dx$.
- (10) Average x^2 over [0,2]
- (11) $f(x) = \cos x, x \ge 0, -1 x^2, x < 0, \int_{-1}^{\pi/2} fx) dx,$
- (12) Find the area between the graph of $x^3 x^2 6x$ and the x-axis,
- (13) $\int_{-1}^{2} |x^3 x| dx$,
- (14) $h' = ?, h(x) = \int_0^{x^2} t^3 \sin t dt,$
- (15) $y' = \sec x$, $y(x) = y_0 + \int_0^x \sec t dt$.

5

5.7 Integration by Substitution

Indefinite Integral. Suppose that F' = f then dF(g(x))/dx = f(g(x))g'(x), hence

$$\int f(g(x))g'(x)dx = F(g(x)) + C$$

Example.

- (1) $\int (2x+1)^5 2dx$,
- (2) $\int 2x\sqrt{1+x^2}dx$, $\int \frac{e^x}{\sqrt{1+e^x}}dx$,
- (3) $\int x^2 \sqrt{x^3 + 9} dx$,
- $(4) \int \sin(3x+4)dx,$
- (5) $\int 3x \cos x^2 dx$,
- (6) $\int \sec^2 3x dx$,
- $(7) \int 2\sin^3 x \cos x dx,$
- (8) $\int 3\sqrt{x}e^{1+\sqrt{x^3}}dx, \int \frac{3\sqrt{x}}{1+\sqrt{x^3}}dx$

Definite Integral.

$$\int_{a}^{b} f(g(x))g'(x)dx = F(g(b)) - F(g(a)) = \int_{g(a)}^{g(b)} f(u)du.$$

Example.

- (1) $\int_0^3 x^2 \sqrt{x^3 + 9} dx$, (2) $\int_3^5 \frac{x dx}{(30 x^2)^2}$, (3) $\int_0^{\frac{\pi}{4}} \frac{\cos 2x}{1 + \sin 2x} dx$.

5.8 Area of Plane Region

$$\int_{a}^{b} f(x) - g(x)dx.$$

Example.

- (1) $y = x, x = 2, y = \frac{1}{x^2},$ (2) $y = x, y = 6 x^2,$ (3) $y = \frac{1}{2}x, y^2 = 8 x$ (4) As (3) in y,(5) $\int_0^1 \sqrt{1 x^2} dx = \frac{\pi}{4}.$

5.9 Numerical Integration

$$L_n = \sum_{i} y_{i-1} \triangle x_i,$$

$$R_n = \sum_{i} y_i \triangle x_i,$$

$$M_n = \sum_{i} y_{i-1/2} \triangle x_i,$$

Trapezoidal

$$T_n = \sum_{i} \frac{y_{i-1} + y_i}{2} \triangle x_i,$$

Simpson

$$S_n = \frac{1}{3}(y_0 + 4y_1 + 2y_2 + 4y_3 + \dots + 4y_{n-1} + y_n)\frac{(b-a)}{2n}$$

, n is even.

Error Estimates.

- (1)
- (2) $ET_n = \frac{K_2(b-a)^3}{12n^2}$, (3) $EM_n = \frac{K_2(b-a)^3}{24n^2}$, (4) $ES_n = \frac{K_4(b-a)^5}{180n^4}$.

Remark.

- (1) When $K_2 = 0$ f is a linear function, then both ET_n and EM_n are 0.
- (2) When $K_4 = 0$, f is a polynomial of degree three, then $ES_n = 0$.