
CHAPTER 4, ADDITIONAL APPLICATION OF THE DERIVATIVES

4.2 Increments, Defferential and Linear Approximation

Definition.

(1) △y = f(x + △x) − f(x) is the increment of f from x to x + △x,
(2) df = f ′(x)dx is the differential of f at x if f is differentiable at x,
(3) f(x + △x) ≈ f(x) + f ′(x)△x is the linear appeoximation of f near x.

Example.

(1)
√

1 + x at x = 0,

(2) 122
2
3 at x = 125,

(3) Example 3 p.228. V (x) = π
3 (30x2 − x3) at x = 5,△x = ± 1

16 .

Absolute and Relative Error.

Definition.

(1) Absolute error = |f(x +△x) − f(x) ≈ f ′(x)dx|,
(2) Relative error = Absolute error /Value.

Example. As in (3) dv
v = 3(20−x)△x

(30−x)x

Error of Linear Approximation.

Example.

(1) x3 at x = 1,△x = 0.1,
(2)

√
1 + x.

Differential. df = f ′(x)dx

Example.

(1) d(xn) = nxn−1dx,
(2) d(sin x) = cos xdx,
(3) d(ex) = exdx

(4) y = 3x2 − 2x
3
2 , dy = (6x − 3x1/2)dx,

(5) u = sin2 t − cos 2t, du = (2 cos 2t + 2 sin 2t)dt,
(6) w = zez, dw = (1 + z)ezdz.
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4.3 Increasing and Decreasing Functions, Mean Value Theorem

Theorem. (Mean Value Theorem [M.V.T]) Suppose that f is continuous on [a, b] and

differentiable on (a, b), then there is a c ∈ (a, b) such that f ′(c) = f(b)−f(a)
b−a , or f(b)−f(a) =

f ′(c)(b − a)

Theorem. (Rolle’s Theorem) Suppose that f is continuous on [a, b] and differentiable on
(a, b) and f(a) = f(b),then there is a c ∈ (a, b) such that f ′(c) = 0.

Proof. Since f is continuous on [a, b], Let xM , xm be a maximum, minimum point of f on
[a, b].

(1) If one of xM , xm is in (a, b), then we have a local extrmum point, so f ′ is zero there.
(2) Both xM , xm are boundary point, since f(a) = f(b), which means that f is a

constant function.

Proof of M.V.T.. Let g(x) = f(a) + f(b)−f(a)
b−a (x − a) and let h(x) = f(x) − g(x). Then

h(a) = 0 = h(b), so by Rolle’s theorem, there is a c ∈ (a, b) such that h′(c) − 0. Which

implies that f ′(c) − f(b)−f(a)
b−a

= 0.

Example.

(1) x
1
2 − x

3
2 on [0, 1],

(2) 1 − x
2
3 on [−1, 1].

Corollary. Suppose that f satisfies the condition in (M.V.T) and f ′(x) = 0 on (a, b),
then f is a constant function on [a, b].

Corollary. Suppose that f, g satisfy the condition in (M.V.T) and f ′(x) = g′(x) on (a, b),
then f(x) = g(x) + K on [a, b].

Example. f ′(x) = 6e2x, and f(0) = 7

Corollary. Suppose that f satisfies the condition in (M.V.T) and f ′(x) < (>)0 on (a, b),
then f is a decreasing (increasing) function on [a, b].

Example.

(1) x2 − 4x + 5,
(2) ex + x − 2 = 0 has exactly one real root,
(3) 3x4 − 4x3 − 12x2 + 5,
(4) sin x < x

4.4 The first derivative test and application

Theorem. Suppose that f is continuous on I and differentiable on I − {c}
(1) If f ′(x) < 0 for x < c near c and f ′(x) > 0 for x > c near c, then f(c) is a local

minimum value.
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(2) If f ′(x) > 0 for x < c near c and f ′(x) < 0 for x > c near c, then f(c) is a local
maximum value.

(3) If f ′(x) < 0 for x 6= c near c or f ′(x) > 0 for x 6= c near c, then f(c) is neither a
local minimum value nor a local maximum value.

Example.

(1) 2x3 − 3x2 − 36x + 7,
(2) 2 ln x

x on (0,∞),

(3) x + 4
x on (0,∞),

(4) Example 4 p.250 V = 125, A = 8r2 + 2πrh,
(5) Example 5 p.251 L = 4 csc θ + 2 sec θ.

Theorem. Suppose that f is continuous on I and differentiable on I − {c}
(1) If f ′(x) < 0 for x < c and f ′(x) > 0 for x > c, then f(c) is a global minimum value.
(2) If f ′(x) > 0 for x < c and f ′(x) < 0 for x > c, then f(c) is a global maximum

value.

4.5 Simple curve sketching

Key points.

(1) Critical points.
(2) Intervals of increasing and decreasing.
(3) limx→±∞.

Example.

(1) x3 − 27x,
(2) 8x5 − 5x4 − 20x3,

(3) x
2
3 [x2 − 2x − 6],

Solution of equations.

(1) x3 − 3x + 1 = 0,
(2) x3 − 3x + 2 = 0,

(3) x3 − 3x + 3 = 0.

4.6 Higher derivative test and Concavity

Definition.

(1) Concave upward= band upward= Convex

f(a) +
f(b) − f(a)

b − a
(c − a) ≥ f(c) (convex)

for all a, b, c ∈ I such that a < c < b.
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(2) Concave downward= band downward= Concave

f(a) +
f(b) − f(a)

b − a
(c − a) ≤ f(c) (concave)

for all a, b, c ∈ I such that a < c < b.

Theorem. f is convex on I iff a, b, c ∈ I such that a < c < b, either of the following is
true:

(1) f(b)−f(a)
b−a ≥ f(c)−f(a)

c−a ,

(2) f(b)−f(c)
b−c ≥ f(b)−f(a)

b−a ,

(3) f(b)−f(c)
b−c

≥ f(c)−f(a)
c−a

,

(4) f(a) ≥ f(c) + f(b)−f(c)
b−c (a − c),

(5) f(b) ≥ f(a) +
f(c)−f(a)

c−a (b − a).

Proof. Each of them are equivalent to

f(a)(b − c) + f(b)(c − a) ≥ f(c)(b − a).

Theorem. If f is convex on I, then f is continuous on I.

Theorem. If f is differentiable on I, then the following conditions are equivalent:

(1) f is convex on I,
(2) For all a, x ∈ I , we have f(a) + f ′(a)(x − a) ≤ f(x),
(3) f ′ in nondecreasing on I.

Proof.

(1) implies (3). For a < x < b, by (1) we have f(b)−f(a)
b−a

>
f(x)−f(a)

x−a
and f(b)−f(x)

b−x
>

f(b)−f(a)
b−a . Let x → b− we get f ′(b) ≥ f(b)−f(a)

b−a and let x → a+ we get f ′(a) ≤ f(b)−f(a)
b−a .

(3) implies (1). Suppose that for some a < c < b such that f(c) > f(a)+ f(b)−f(a)
b−a (c−a),

then we get f(b)−f(a)
b−a >

f(b)−f(c)
b−c and f(c)−f(a)

c−a >
f(b)−f(a)

b−a . Now by M.V.T. there exist

d ∈ (a, c), e ∈ (c, b) such that

f ′(d) =
f(c) − f(a)

c − a
>

f(b) − f(a)

b − a
>

f(b) − f(c)

b − c
= f ′(e)

which is a contradiction to (3)

(2) implies (3). For a < b, by (2) we have f ′(a) ≤ f(b)−f(a)
b−a ≤ f ′(b).

(3) implies (2). Assume that for some a < b such that f(b) < f(a) + f ′(a)(b − a), that

means f ′(a) >
f(b)−f(a)

b−a , then by M¿V¿T¿ there exists c ∈ (a, b) such that f ′(a) > f ′(c).

Which is a contradiction to (3).

If f ′′ exists, then (3) is equivalent to f ′′(x) ≥ 0, so we have the following theorem.
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Theorem. If f ′′ exists on I, then f is convex iff f ′′(x) ≥ 0 on I.

Theorem. (Second derivative test)

(1) Suppose that f” ≥ 0 on I and f ′(c) = o, then f(c) is the minimum value of f on
I.

(2) Suppose that f” ≤ 0 on I and f ′(c) = o, then f(c) is the maximum value of f on
I.

Example.

(1) x3 − 3x2 + 3,
(2) Example 4 p.269 V = x2y = 500 minimize A.

Inflection point. c is an inflection point of f if f is concave upward on one side of c but
concave downward on the other side of c.

Example.

(1) (2x2 − 3x − 1)e−x,
(2) 8x5 − 5x4 − 20x3,

(3) 4x
1
3 + x

4
3 ,

(4) Example 8 p.276 x2 − xy + y2 = 9.

4.7 Curve sketching and Asympote

Vertical asymptote. x = a is a vertical asymptote of y = f(x) if

lim
x→a±

f(x) = ±∞.

Example. 1
(x+2)2 , x

(x+2)2 .

Horizontal asymptote. y = L is a horizotal asymptote of y = f(x) if

lim
x→±∞

f(x) = L.

Example.

(1) 3x3
−x

2x3+7x2−4
,

(2)
√

x + a −√
x,

(3) 4e2x

(1+ex)2
,

(4) e−
x

5 sin 2x,
(5) x

x−2 ,

(6) x
(x+2)2 ,

(7) 2+x−x2

(x−1)2
.
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Slant asymptote. y = mx + b is an slant asymptote of y = f(x) if

lim
x→±∞

[f(x) − (mx + b)] = 0.

Example.
√

x2 − 1.

Key points of sketching.

(1) f ′(x) for critical point, local maximum, local minmum, interval of increasing, de-
creasing.

(2) f”(x) for concave upward, downward, and point of inflection.
(3) Asymptotes.
(4) x-intercept, y-intercept.
(5) Symmetry. f(−x) = f(x) even function symmetry with respect to y-axis. f(−x) =

−f(x) odd function, symmetry with respect to origin.

Example. x2+x−1
x−1 .

4.9 Indeterminate forms, L’Hopital’s Rule

Theorem. Suppose that f(a) = 0 = g(a) and f, g are differentiable near a. If

lim
x→a

f ′(x)

g′(x)
= L

then

lim
x→a

f(x)

g(x)
= L.

Theorem. (Cauchy’s Generalize Mean Value Theorem) Suppose that f, g are contiuous
on [a, b] and differentiable on (a, b), then there is c ∈ (a, b) such that

f ′(c)(g(b) − g(a)) = g′(c)(f(b) − f(a)).

Proof of L’Hopital’s Rule. (1) a ∈ R,

lim
x→a

f(x)

g(x)
= lim

x→a

f(x) − f(a)

g(x) − g(a)
= lim

x→a

f ′(c)

g′(c)
= L.

By the Cauchy’s Generalize Mean Value Theorem we hav the second equality , and since
c is between a, x, we get the last equality. (2) if a = ±∞ change variable x = 1

y .

Example.

(1) limx→0
ex

−1
sin 2x ,

(2) limx→1
1−x+ln x
1+cosπx ,

(3) limx→0
sin x
x+x2 .
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Theorem. Suppose that limx→a f(x) = ∞ = limx→a g(x) and f, g are differentiable near
a. If

lim
x→a

f ′(x)

g′(x)
= L

then

lim
x→a

f(x)

g(x)
= L.

Example.

(1) limx→∞
ln 2x
ln x

,

(2) x2e−x.

Magnanitute of ex and lnx.

Theorem.

(1) limx→∞
xn

ex
= 0,

(2) limx→∞
ln x

x
1
m

= 0.

4.10 More Indeterminate Forms

(1) 0 · ∞ limx→∞ x · ln x−1
x+1 .

(2) ∞−∞ limx→0
1
x − 1

sin x , limx→∞(
√

x2 + 3x − x).

(3) 1∞ limx→0(cos x)
1
x .

(4) 00 limx→0+ xtan x, limx→∞(1 + 1
x)x = e.




