CHAPTER 3, THE DERIVATIVES

3.1 DERIVATIVE AND RATES OF CHANGE

The Derivative. The derivative of the function f is the function f' defined by

oy g Jlath) — fla)
f'(a) = lim 3

h—0

for all a for which this limit exists.

The process from f to f’ is call differentiation.

f is differentiable at a if f'(a) exists. f is a differentiable function if f is differentiable
at all x in the domain.

Example.

(1) £() = 225 () = o
(2) f(x) =ax® +bzx +c f'(z) = 2ax +b.

Differentiation notation. y = f(z) , Z—Z = f'(z).

Example.
(1) y = 322 — 4 + 5, dy—6a:—4

dz
(2) z =2t —5t%, & =2—10¢t.

Instantaneous Rates of Change. Q) = f(t), AQ = f(t + At) — f(t) the increment of
Q fromt tot+ At
lima;—o % = f'(t) is the instantaneous rates of change of () with respect to t.

Example.

(1) Example 3 p. 111 V(t) = (60 —t)* ,V'(15) =7, V'(45) =

(2) z(t) is the position at time ¢, v(f) = % is the velocity at time ¢, a(t) = 2 is the
acceleration at time t,

(3) Example 5 p.113 z(t) = 52 + 100, v(t) = 10t,

(4) The equation of vertical motion is y = —1gt*> + vt + yo, Example 6 p. 114
y(t) = —16t% + 96t,

(5) Example 7 p.115 A =22, z = 5t, 44 = 25, 44 = 50¢.

Alternating notion of differentiability. Suppose that f is differentiable at a let

fla+h) - f(a)

e(a,h) =
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then limp_, e(a,h) = 0. Now suppose that

fla+ h) = f(a) + Ah + he(a, h) (1)
such that
;lzii% e(a,h) =0 (2)

then f is differentiable at a and f'(a) = A. Hence f is differentiable at a iff both (1) and
(2) hold.

Theorem. If f is differentiable at x , then f is continuous at x.

3.2 BASIC DIFFERENTIATION RULES

Theorem. Let D, f = f' = % then

(1) Dyc =0,

(2) Dyx =1,

(3) Dya™ = naz™ ! for n is a positive integer,

(4) Dl’% = _1-%7

(5) Dyzw = %x%_l for n is a positive integer.
Example.

(1) Dyx” = 725,
(2) Dyt'" = 17t16,
(3) D,z1% =1002%.

Derivative of linear combinations.

(af(x) + bg(x))" = af'(x) + bg'(x).

Example.
(1) D,(162%) = 962°, D,(723) = 2122, D, (99u'%?) = 9900u°?,

(2) D, (36 + 26x + T2° — 52%) = 26 + 352* — 452% in general

Dy(ana"™ + ap_12" ' 4+ + a1+ ag) = nax 4+ +a,

(3) Find the tangent line to y = 223 — 722 + 3z + 4 at (1,2).

Differentiation of Product.

Dy(f-g)=Dyf-g+ [ Dyyg.

Example. [(1 — 423)(32? — bz + 2)] = —1222(32% — bz + 2) + (1 — 423)(62 — 5).
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Differentiation of Quotient.

1 f'(@)
Dy(—) = —
(f(*’“") ) (f(z))?
and
D f(ﬂf _ f/([)j)g(aj) _ (33)9/(33)
xg(x (9(z))?
Example
(1) DJL’ 1’21—1-1 _(x22_i‘_r1)2,
(2) Dx[)j_n = —px " ’
(3) D, 3 50aT
(4) Dy L—rﬁ _ -3t (1+(t13_;4()12—t (4t

3.3 CHAIN RULE

Theorem. Suppose that g is differentiable at x and f is differentiable at g(z), then
H = f o g is differentiable at x and

H'(z) = f'(g9(z)) - ¢'(2).

Suppsoe that w is a function of u and w is a function of x, then the rate of change of w

. . dw  du
with respect to x is G - .

Proof. Since g is differentiable at x,
g(z +h) = g(x) + ¢ (z)h + heg,
and f is differentiable aty,

fly+k)=fly) + f Wk + ke (*)

Substitute y = g(z) and k = ¢'(x)h + hey into (*) we get

flg(z +h)) = fg(x)) + f'(9(x))(g' (x)h + heg) + (g' (x)h + heg)ex (**.)

After collecting terms on the right hand side of (**) and let

erog = f'(9(2))g (x)eg + (9'(x) + eg)ex,

we get

flg(z + h)) = f(g(x)) + f(9()g' (x)h + he foq-

Since

lim e =0
hoo %9 ’
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the proof is complete.

Example.
(1) D.[(3z% + 5)'7],
(21‘3—11‘-1—7)2]’

Dz(zli)sv
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) dt

(2)

(3)

4) Example 6 p.135 Suppose that & = 0.2, &Y =? when r = 5.
dt

(5)

5) Example 7 p.136 Suppose that % =kS, M= 47”7“3/), S = 47?2 r(0) =0, 7(20) =

1 then r(?) = 3.

3.4 DERIVATIVES OF ALGEBRAIC FUNCTIONS

Generalized power rule.

o o~~~ —
© 00 J O U i W N
— — ' —
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3z

3z
I

D,z

3=

Da[f(@)]" = nlf(@)]" " f (2).

3.5 MAXIMA AND MINIMA OF CONTINUOUS FUNCTIONS ON CLSOED INTERVAL

Global (absolute) maximun,minimun. f(c) is a global(absolute) maximum (mini-
mum) value of f if f(c) > (<) f(z) for all x in the domain of f.

Example.

(1) f(x) =2z 0n0<zx <1,
(2) g(z) =1 for 0 <z <1 and g(0) = 0.

Local (relative) maximun,minimun. f(c) is a local(relative) maximum (minimum)
value of f if there is an open interval I contains ¢ such that f(c) > (<)f(x) for all z € 1.
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Theorem. If f is differentiable at ¢ and f(c) is a local extremum value of f ,

f'(e) =0

Critical point. A point c is a critical point of f if either f'(c) = 0 or f is not differentiable

at c.

Theorem. Suppose that f(c) is a global extremum value of f on [a,b], then either c is a

critical point of f or c is a or b.

Example.
(1) gx(go x) on [0,30],
(2) 22® — 322 — 122 + 15 on [0, 3],
(3) 3— |a:—2| on [1,4],
(4) b3 — 23 on[ 1,4],
(5) 4x* —112% — 52 — 3 on [-3, 3].

3.6 APPLIED OPTIMIZATION PROBLEMS

(1) Example 1 p.156 2z + y = 200, A = xy
Example 2 p.157 V = z(8 — 2x)(5 — 2xz),
C(x) =a+bx,z =m —np(z), P(x) = zp(x) — C(x)

Example 3 p.158 a = 10,000, b = 8, p(7000) = 13, p(5000) = 15,

Example 5 p.160 A = 4zy, 22 + y? = r?,

(2)
(3)
(4)
(5) Example 4 p.159 C = 3007,V = 7wr2h,4nr? + 2mrh = C,
(6)
(7) Principle of refraction Exercise 48 p.167.

3.7 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

Theorem.

(1) Dy(sinz) = cosz,
(2) Dy(cosz) = —sinuz.

Corollary.

(1) D, tanx = sec? ,

(2) Dy cotx = —csc?ux,

(3) D, secx = tanzsecz,

(4) D, cscx = — cot x csc .
Example.

(1) z%sinz,

2 COosS T

l—sinx’
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Tangent line to y = cos? x at z = 0.5 ,y(0.5) ~ 0.7702,3'(0.5) ~ —0.8415.
xtan z, cot® z, Sf/cf,

2sin 10¢ + 3 cos 7t,

sin® z cos* oL,

(5)
(6)
(7)
(8)
(9) v cos/x,
10)
11)
12)
13)

sin(2z — 1)2,
tan 223, cot? 2t, sec VYsveser,

dé o _ o dy __
Example 12 p.174 tan6 = £, & = 3°,0 = 60°, ¥ =7,
Example 13 p.175 A = 2r cosfsin 6.

3.8 EXPONENTIAL AND LOGARITHIMIC FUNCTIONS

Example.(1) P(0) = 1, P(1) = 2 then P(£) =27, so P(t) = 2".

Laws of Exponents. o't =a"-a*,a™" = L, (a")* =a"™,a" - b" = (a-b)"

a™’

. : eth_ o : h_
Derivate of a®. limj_,o 2 © = ¢®limp_o S = m(a)a®.

Let e be the real number such that m(e) = 1, then e also be written as exp(x)

Example.
2x

(1) a. D,(z%e7%), b. Dysirq,
(2) Find the maxima of (1) a.

Inverse function. f has an inverse function g if f(x) =y iff g(y) = x. A function f has
an inverse function iff f is an one to one function.

Example.
(1) f:fL"i‘l,QfL',% theng:y_lv%’%’
(2) 2,
(3) 3.

Increasing functions,Decreasing functions. A function f defined on an intervall is
increasing (decreasing) function if for all a < b,a,b € I f(a) < (>)f(b).

Theorem. Suppose that f is an one to one continuous function on an interval I, then f
is either increasing or decreasing on 1.

Lemma. Suppose that f is an one to one continuous function on an interval I. And
suppose that a < b,a,b € I and f(a) < f(b), then for x,y,z € I such that r < a < y <
b < z we have f(z) < f(a) < f(y) < f(b) < f(2).

Theorem. Suppose that f is an one to one continuous function on an interval I, then
f~1 is also continuous.

Proof. Assume f is increasing and let f(a) = b, then f=1(b) = a. For given small ¢ > 0,
let by = f(a—€),ba = f(a+¢€). Let § = min(|b — b1, |b — b2], then for |y — b] < J, we have
by <y < by. Which implies a — e < f~1(y) < a+e.
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Theorem. Suppose that f is an one to one continuous function on an interval I and f
is differentiable at a € I and f'(a) # 0. Let f(a) = b, then f~! is differentiable at b and

-1y _ 1
(F1Y(8) = 7.
Proof. Let f(a) = b, then f~1(b) = a. Now let h = f=1(b+ k) — f~1(b), since b is fixed, h

is a continuous function of k and f(a + h) = b+ k.

_fTo+k) - h
i i = et h = f(a)

for k — 0 implies h — 0 and the last limit is just %

Natural Logarithm. Inz = y iff e¥ = x, Inab = Ina + Inb, ln% = —Ina,lna” = rlna,
(Inz) = 1.

Logerithmic Differentiation.

Example.
0, .\ 8
1) D&+
( ) (1’34—1)%
(2) Do)

Y

3.9 IMPLICIT DIFFERENTIATION AND RELATED RATES

Implicit Differentiation. Suppose that f(x,y) = ¢ defines y as a function of x, apply
. .. . dy
differentiation laws to the equation , you can solve = .

Example.
(1) T — y2 = 07
(2) 22 + y? = 100,
(3) 2% + y* = 3wy,
(4) sin(x 4 2y) = 2x cos y.

Related Rates. Suppose that f(x(t),y(t)) = c defines a relation of y(t) and xz(t), apply
differentiation laws to the equation , you can get a relation of % and Z—? .
Example.

(1) Example 5 p.197 22 + 4> = 25,2 =3,y = 4,2/ = 12,y =7,
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(2) Example 6 p.197 22 =9 +y2, 2/ =500,z = 5,y =7,
(3) Example 7 p.198 12 = O 2/ = 8,2/ =7,

(4) Example 8 p.199 u? = 22 + y%,0v? = (6 — 2)? + y*,u(l) = 5 = v(1),u/(1) =
28,0'(1) = 4,2(1) =7, y(1) =2,2/(1) =2,/(1) =.

3.10 SUCCESSIVE APPROXIMATION, NEWTON’S METHOD

Convergence of Approximation. We asy a sequence of approximation {x1,xs, 3, -}
converges to the number r provided for any € > 0 there is N(¢€) such that n > N (e) implies
|lxn — 7| <e.

Newton’s iteration formula. z,4; =z, — )

Example. f(z) = 3.
Theorem. Suppose that |f"| < M,|f'| > &, then |zp41 — xo| < KM|zy — 20]*






