
CHAPTER 3, THE DERIVATIVES

3.1 Derivative and Rates of Change

The Derivative. The derivative of the function f is the function f ′ defined by

f ′(a) = lim
h→0

f(a + h) − f(a)

h

for all a for which this limit exists.
The process from f to f ′ is call differentiation.
f is differentiable at a if f ′(a) exists. f is a differentiable function if f is differentiable

at all x in the domain.

Example.

(1) f(x) = x
x+3 f ′(x) = 3

(x+3)2 ,

(2) f(x) = ax2 + bx + c f ′(x) = 2ax + b.

Differentiation notation. y = f(x) , dy
dx

= f ′(x).

Example.

(1) y = 3x2 − 4x + 5, dy
dx

= 6x − 4,

(2) z = 2t − 5t2, dz
dt

= 2 − 10t.

Instantaneous Rates of Change. Q = f(t), △Q = f(t + △t) − f(t) the increment of
Q from t to t + △t

lim△t→0
△Q
△t

= f ′(t) is the instantaneous rates of change of Q with respect to t.

Example.

(1) Example 3 p. 111 V (t) = 1
6 (60 − t)2 ,V ′(15) =?, V ′(45) =?,

(2) x(t) is the position at time t, v(t) = dx
dt

is the velocity at time t, a(t) = dv
dt

is the
acceleration at time t,

(3) Example 5 p.113 x(t) = 5t2 + 100, v(t) = 10t,
(4) The equation of vertical motion is y = − 1

2gt2 + v0t + y0, Example 6 p. 114
y(t) = −16t2 + 96t,

(5) Example 7 p.115 A = x2, x = 5t, dA
dx

= 2x, dA
dt

= 50t.

Alternating notion of differentiability. Suppose that f is differentiable at a let

e(a, h) =
f(a + h) − f(a)

h
− f ′(a),
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then limh→0 e(a, h) = 0. Now suppose that

f(a + h) = f(a) + Ah + he(a, h) (1)

such that
lim
h→0

e(a, h) = 0 (2)

then f is differentiable at a and f ′(a) = A. Hence f is differentiable at a iff both (1) and
(2) hold.

Theorem. If f is differentiable at x , then f is continuous at x.

3.2 Basic Differentiation Rules

Theorem. Let Dxf = f ′ = df

dx
then

(1) Dxc = 0,
(2) Dxx = 1,
(3) Dxxn = nxn−1 for n is a positive integer,
(4) Dx

1
x

= − 1
x2 ,

(5) Dxx
1
n = 1

n
x

1
n
−1 for n is a positive integer.

Example.

(1) Dxx7 = 7x6,
(2) Dtt

17 = 17t16,
(3) Dzz100 = 100z99.

Derivative of linear combinations.

(af(x) + bg(x))′ = af ′(x) + bg′(x).

Example.

(1) Dx(16x6) = 96x5, Dz(7z3) = 21z2, Du(99u100) = 9900u99,
(2) Dx(36 + 26x + 7x5 − 5x9) = 26 + 35x4 − 45x8,in general

Dx(anxn + an−1x
n−1 + · · · + a1x + a0) = nanxn−1 + · · · + a1,

(3) Find the tangent line to y = 2x3 − 7x2 + 3x + 4 at (1, 2).

Differentiation of Product.

Dx(f · g) = Dxf · g + f · Dxg.

Example. [(1 − 4x3)(3x2 − 5x + 2)]′ = −12x2(3x2 − 5x + 2) + (1 − 4x3)(6x − 5).
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Differentiation of Quotient.

Dx(
1

f(x)
) = − f ′(x)

(f(x))2

and

Dx

f(x)

g(x)
=

f ′(x)g(x) − f(x)g′(x)

(g(x))2
.

Example.

(1) Dx
1

x2+1 = − 2x
(x2+1)2 ,

(2) Dxx−n = −nx−n−1,

(3) Dx
5x4−6x+7

2x2 ,

(4) Dt
1−t3

1+t4
= −3t2(1+t4)−(1−t3)(4t3

(1+t4)2 .

3.3 Chain Rule

Theorem. Suppose that g is differentiable at x and f is differentiable at g(x), then
H = f ◦ g is differentiable at x and

H ′(x) = f ′(g(x)) · g′(x).

Suppsoe that w is a function of u and u is a function of x, then the rate of change of w

with respect to x is dw
du

· du
dx

.

Proof. Since g is differentiable at x,

g(x + h) = g(x) + g′(x)h + heg,

and f is differentiable aty,

f(y + k) = f(y) + f ′(y)k + kek (*.)

Substitute y = g(x) and k = g′(x)h + heg into (*) we get

f(g(x + h)) = f(g(x)) + f ′(g(x))(g′(x)h + heg) + (g′(x)h + heg)ek (**.)

After collecting terms on the right hand side of (**) and let

ef◦g = f ′(g(x))g′(x)eg + (g′(x) + eg)ek,

we get
f(g(x + h)) = f(g(x)) + f ′(g(x))g′(x)h + hef◦g .

Since
lim
h→0

ef◦g = 0,
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the proof is complete.

Example.

(1) Dx[(3x2 + 5)17],
(2) Dx[ 1

(2x3−x+7)2 ],

(3) Dz(z−1
z+1 )5,

(4) Example 6 p.135 Suppose that dr
dt

= 0.2, dV
dt

=? when r = 5.

(5) Example 7 p.136 Suppose that dM
dt

= kS , M = 4π
3 r3ρ, S = 4πr2 ,r(0) = 0, r(20) =

1 then r(?) = 3.

3.4 Derivatives of Algebraic Functions

Dxx
n
m =

n

m
x

n
m

−1.

Generalized power rule.

Dx[f(x)]n = n[f(x)]n−1f ′(x).

Example.

(1) a.
√

x , b. x
3
2 , c. t−

2
3

(2)
√

4 − x2,

(3) 5x
3
2 − 2x

2
3 ,

(4) (3 − 5x)7,
(5)

√
2x2 − 3x + 5,

(6) [5t + (3t − 1)
4
3 ]10,

(7) |x| =
√

x2,

(8) x
1
3 ,

(9) x
√

1 − x2,

(10) 1 − x
2
5 .

3.5 Maxima and Minima of Continuous Functions on Clsoed Interval

Global (absolute) maximun,minimun. f(c) is a global(absolute) maximum (mini-
mum) value of f if f(c) ≥ (≤)f(x) for all x in the domain of f .

Example.

(1) f(x) = 2x on 0 ≤ x < 1,
(2) g(x) = 1

x
for 0 < x ≤ 1 and g(0) = 0.

Local (relative) maximun,minimun. f(c) is a local(relative) maximum (minimum)
value of f if there is an open interval I contains c such that f(c) ≥ (≤)f(x) for all x ∈ I.
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Theorem. If f is differentiable at c and f(c) is a local extremum value of f , then
f ′(c) = 0.

Critical point. A point c is a critical point of f if either f ′(c) = 0 or f is not differentiable
at c.

Theorem. Suppose that f(c) is a global extremum value of f on [a, b], then either c is a
critical point of f or c is a or b.

Example.

(1) 3
5x(30 − x) on [0, 30],

(2) 2x3 − 3x2 − 12x + 15 on [0, 3],
(3) 3 − |x − 2| on [1, 4],

(4) 5x
2
3 − x

5
3 on [−1, 4],

(5) 4x4 − 11x2 − 5x − 3 on [−3, 3].

3.6 Applied Optimization Problems

Example.

(1) Example 1 p.156 2x + y = 200, A = xy,
(2) Example 2 p.157 V = x(8 − 2x)(5 − 2x),
(3) C(x) = a + bx, x = m − np(x), P (x) = xp(x) −C(x)
(4) Example 3 p.158 a = 10, 000, b = 8, p(7000) = 13, p(5000) = 15,
(5) Example 4 p.159 C = 300π, V = πr2h, 4πr2 + 2πrh = C ,
(6) Example 5 p.160 A = 4xy, x2 + y2 = r2,
(7) Principle of refraction Exercise 48 p.167.

3.7 Derivatives of Trigonometric Functions

Theorem.

(1) Dx(sin x) = cos x,
(2) Dx(cos x) = − sin x.

Corollary.

(1) Dx tan x = sec2 x,
(2) Dx cot x = − csc2 x,
(3) Dx secx = tanx sec x,
(4) Dx cscx = − cot x csc x.

Example.

(1) x2 sinx,
(2) cosx

1−sin x
,

(3) cos3 t,

(4) (2 − cos t)
2
3 ,
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(5) Tangent line to y = cos2 x at x = 0.5 ,y(0.5) ≈ 0.7702, y′(0.5) ≈ −0.8415.
(6) x tan x, cot3 x, sec z√

z
,

(7) 2 sin 10t + 3 cos πt,
(8) sin3 x cos4 5x,
(9)

√
x cos

√
x,

(10) sin2(2x − 1)
3
2 ,

(11) tan 2x3, cot3 2t, sec
√

y,
√

cscx,

(12) Example 12 p.174 tan θ = y

5 , dθ
dt

= 3◦, θ = 60◦, dy

dt
=?,

(13) Example 13 p.175 A = 2r cos θ sin θ.

3.8 Exponential and Logarithimic Functions

Example.(1) P (0) = 1, P (1) = 2 then P ( q
p
) = 2

q

p , so P (t) = 2t.

Laws of Exponents. ar+s = ar · as, a−r = 1
ar , (ar)s = ars, ar · br = (a · b)r

Derivate of ax. limh→0
ax+h−ax

h
= ax limh→0

ah−1
h

= m(a)ax .

Let e be the real number such that m(e) = 1, then ex also be written as exp(x)

Example.

(1) a. Dx(x2e−x), b. Dx
e2x

2x+1
,

(2) Find the maxima of (1) a.

Inverse function. f has an inverse function g if f(x) = y iff g(y) = x. A function f has
an inverse function iff f is an one to one function.

Example.

(1) f = x + 1, 2x, 1
x

then g = y − 1, y

2
, 1

y
,

(2) x2,
(3) x3.

Increasing functions,Decreasing functions. A function f defined on an intervalI is
increasing (decreasing) function if for all a < b, a, b ∈ I f(a) < (>)f(b).

Theorem. Suppose that f is an one to one continuous function on an interval I, then f

is either increasing or decreasing on I.

Lemma. Suppose that f is an one to one continuous function on an interval I. And
suppose that a < b, a, b ∈ I and f(a) < f(b), then for x, y, z ∈ I such that x < a < y <

b < z we have f(x) < f(a) < f(y) < f(b) < f(z).

Theorem. Suppose that f is an one to one continuous function on an interval I, then
f−1 is also continuous.

Proof. Assume f is increasing and let f(a) = b, then f−1(b) = a. For given small ǫ > 0,
let b1 = f(a − ǫ), b2 = f(a + ǫ). Let δ = min(|b − b1|, |b − b2|, then for |y − b| < δ, we have
b1 < y < b2. Which implies a − ǫ < f−1(y) < a + ǫ.
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Theorem. Suppose that f is an one to one continuous function on an interval I and f

is differentiable at a ∈ I and f ′(a) 6= 0. Let f(a) = b, then f−1 is differentiable at b and
(f−1)′(b) = 1

f ′(a)
.

Proof. Let f(a) = b, then f−1(b) = a. Now let h = f−1(b + k)− f−1(b), since b is fixed, h

is a continuous function of k and f(a + h) = b + k.

lim
k→0

f−1(b + k) − f−1(b)

k
= lim

k→0

h

f(a + h − f(a)
,

for k → 0 implies h → 0 and the last limit is just 1
f ′(a) .

Natural Logarithm. lnx = y iff ey = x, ln ab = ln a + ln b, ln 1
a

= − lna, ln ar = r ln a,

(lnx)′ = 1
x
.

Example.

(1) Dx( ln x
x

), Dx(ln |x|) = 1
x
,

(2) Dx(ln(1 + x2)),
(3) Dx(

√
1 + lnx),

(4) Dx ln
√

2x+3
4x+5 .

Logerithmic Differentiation.

Example.

(1) Dx
(x2+1)

3
2

(x3+1)
4
3

,

(2) Dx(xx+1).

3.9 Implicit Differentiation and Related Rates

Implicit Differentiation. Suppose that f(x, y) = c defines y as a function of x, apply

differentiation laws to the equation , you can solve dy

dx
.

Example.

(1) x − y2 = 0,
(2) x2 + y2 = 100,
(3) x3 + y3 = 3xy,
(4) sin(x + 2y) = 2x cos y.

Related Rates. Suppose that f(x(t), y(t)) = c defines a relation of y(t) and x(t), apply

differentiation laws to the equation , you can get a relation of dt
dt

and dy
dt

.

Example.

(1) Example 5 p.197 x2 + y2 = 25, x = 3, y = 4, x′ = 12, y′ =? ,
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(2) Example 6 p.197 z2 = 9 + y2, z′ = 500, z = 5, y′ =? ,
(3) Example 7 p.198 18

z
= 6

z−x
, x′ = 8, z′ =? ,

(4) Example 8 p.199 u2 = x2 + y2, v2 = (6 − x)2 + y2, u(1) = 5 = v(1), u′(1) =
28, v′(1) = 4, x(1) =?, y(1) =?, x′(1) =?, y′(1) =?.

3.10 Successive Approximation, Newton’s Method

Convergence of Approximation. We asy a sequence of approximation {x1, x2, x3, · · · }
converges to the number r provided for any ǫ > 0 there is N(ǫ) such that n ≥ N(ǫ) implies
‖xn − r‖ < ǫ.

Newton’s iteration formula. xn+1 = xn − f(xn)
f ′(xn) .

Example.f(x) = x
1
3 .

Theorem. Suppose that |f”| < M, |f ′| > 1
K

, then |xn+1 − x0| ≤ KM |xn − x0|2.




