CHAPTER 3, THE DERIVATIVES

3.1 Derivative and Rates of Change

The Derivative. The derivative of the function f is the function f' defined by

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

for all a for which this limit exists.

The process from f to f' is call differentiation.

f is differentiable at a if f'(a) exists. f is a differentiable function if f is differentiable at all x in the domain.

Example.

(1)
$$f(x) = \frac{x}{x+3} f'(x) = \frac{3}{(x+3)^2},$$

(2) $f(x) = ax^2 + bx + c f'(x) = 2ax + b.$

Differentiation notation. y = f(x), $\frac{dy}{dx} = f'(x)$.

Example.

(1)
$$y = 3x^2 - 4x + 5, \frac{dy}{dx} = 6x - 4,$$

(2) $z = 2t - 5t^2, \frac{dz}{dt} = 2 - 10t.$

Instantaneous Rates of Change. Q = f(t), $\triangle Q = f(t + \triangle t) - f(t)$ the increment of Q from t to $t + \Delta t$

 $\lim_{\Delta t\to 0} \frac{\Delta Q}{\Delta t} = f'(t)$ is the instantaneous rates of change of Q with respect to t.

Example.

- (1) Example 3 p. 111 $V(t) = \frac{1}{6}(60-t)^2$, V'(15) = ?, V'(45) = ?,
- (2) x(t) is the position at time t, $v(t) = \frac{dx}{dt}$ is the velocity at time t, $a(t) = \frac{dv}{dt}$ is the acceleration at time t,
- (3) Example 5 p.113 $x(t) = 5t^2 + 100, v(t) = 10t$, (4) The equation of vertical motion is $y = -\frac{1}{2}gt^2 + v_0t + y_0$, Example 6 p. 114 $y(t) = -16t^2 + 96t,$
- (5) Example 7 p.115 $A = x^2$, x = 5t, $\frac{dA}{dx} = 2x$, $\frac{dA}{dt} = 50t$.

Alternating notion of differentiability. Suppose that f is differentiable at a let

$$e(a,h) = \frac{f(a+h) - f(a)}{h} - f'(a),$$

Typeset by \mathcal{AMS} -TFX

then $\lim_{h\to 0} e(a,h) = 0$. Now suppose that

$$f(a+h) = f(a) + Ah + he(a,h)$$

$$\tag{1}$$

such that

$$\lim_{h \to 0} e(a,h) = 0 \tag{2}$$

then f is differentiable at a and f'(a) = A. Hence f is differentiable at a iff both (1) and (2) hold.

Theorem. If f is differentiable at x, then f is continuous at x.

3.2 Basic Differentiation Rules

Theorem. Let $D_x f = f' = \frac{df}{dx}$ then

(1)
$$D_x c = 0,$$

(2) $D_x x = 1,$
(3) $D_x x^n = nx^{n-1}$ for *n* is a positive integer,
(4) $D_x \frac{1}{x} = -\frac{1}{x^2},$
(5) $D_x x^{\frac{1}{n}} = \frac{1}{n} x^{\frac{1}{n}-1}$ for *n* is a positive integer.

Example.

(1)
$$D_x x^7 = 7x^6$$
,
(2) $D_t t^{17} = 17t^{16}$,
(3) $D_z z^{100} = 100z^{99}$

Derivative of linear combinations.

$$(af(x) + bg(x))' = af'(x) + bg'(x).$$

Example.

- (1) $D_x(16x^6) = 96x^5, D_z(7z^3) = 21z^2, D_u(99u^{100}) = 9900u^{99},$ (2) $D_x(36+26x+7x^5-5x^9) = 26+35x^4-45x^8,$ in general

$$D_x(a_nx^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0) = na_nx^{n-1} + \dots + a_1,$$

(3) Find the tangent line to $y = 2x^3 - 7x^2 + 3x + 4$ at (1,2).

Differentiation of Product.

$$D_x(f \cdot g) = D_x f \cdot g + f \cdot D_x g.$$

Example. $[(1-4x^3)(3x^2-5x+2)]' = -12x^2(3x^2-5x+2) + (1-4x^3)(6x-5).$

Differentiation of Quotient.

$$D_x(\frac{1}{f(x)}) = -\frac{f'(x)}{(f(x))^2}$$

and

$$D_x \frac{f(x)}{g(x)} = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

Example.

(1)
$$D_x \frac{1}{x^2+1} = -\frac{2x}{(x^2+1)^2},$$

(2) $D_x x^{-n} = -nx^{-n-1},$
(3) $D_x \frac{5x^4 - 6x + 7}{2x^2},$
(4) $D_t \frac{1-t^3}{1+t^4} = \frac{-3t^2(1+t^4) - (1-t^3)(4t^3)}{(1+t^4)^2}.$

3.3 CHAIN RULE

Theorem. Suppose that g is differentiable at x and f is differentiable at g(x), then $H = f \circ g$ is differentiable at x and

$$H'(x) = f'(g(x)) \cdot g'(x).$$

Suppose that w is a function of u and u is a function of x, then the rate of change of w with respect to x is $\frac{dw}{du} \cdot \frac{du}{dx}$.

Proof. Since g is differentiable at x,

$$g(x+h) = g(x) + g'(x)h + he_g,$$

and f is differentiable at y,

$$f(y+k) = f(y) + f'(y)k + ke_k$$
(*.)

Substitute y = g(x) and $k = g'(x)h + he_g$ into (*) we get

$$f(g(x+h)) = f(g(x)) + f'(g(x))(g'(x)h + he_g) + (g'(x)h + he_g)e_k$$
(**.)

After collecting terms on the right hand side of (**) and let

$$e_{f \circ g} = f'(g(x))g'(x)e_g + (g'(x) + e_g)e_k,$$

we get

$$f(g(x+h)) = f(g(x)) + f'(g(x))g'(x)h + he_{f \circ g}$$

Since

$$\lim_{h \to 0} e_{f \circ g} = 0,$$

the proof is complete.

Example.

- (1) $D_x[(3x^2+5)^{17}],$ (1) $D_x[(3)] = D_x[\frac{1}{(2x^3 - x + 7)^2}],$ (3) $D_z(\frac{z-1}{z+1})^5,$
- (4) Example 6 p.135 Suppose that $\frac{dr}{dt} = 0.2$, $\frac{dV}{dt} = ?$ when r = 5. (5) Example 7 p.136 Suppose that $\frac{dM}{dt} = kS$, $M = \frac{4\pi}{3}r^3\rho$, $S = 4\pi r^2$, r(0) = 0, r(20) = 01 then r(?) = 3.

3.4 Derivatives of Algebraic Functions

$$D_x x^{\frac{n}{m}} = \frac{n}{m} x^{\frac{n}{m}-1}.$$

Generalized power rule.

$$D_x[f(x)]^n = n[f(x)]^{n-1}f'(x)$$

Example.

(1) a.
$$\sqrt{x}$$
, b. $x^{\frac{7}{2}}$, c. $t^{-\frac{7}{3}}$
(2) $\sqrt{4-x^2}$,
(3) $5x^{\frac{3}{2}} - 2x^{\frac{2}{3}}$,
(4) $(3-5x)^7$,
(5) $\sqrt{2x^2 - 3x + 5}$,
(6) $[5t + (3t-1)^{\frac{4}{3}}]^{10}$,
(7) $|x| = \sqrt{x^2}$,
(8) $x^{\frac{1}{3}}$,
(9) $x\sqrt{1-x^2}$,
(10) $1-x^{\frac{2}{5}}$.

3.5 Maxima and Minima of Continuous Functions on Clsoed Interval

Global (absolute) maximun, minimun. f(c) is a global (absolute) maximum (minimum) value of f if $f(c) \ge (\le)f(x)$ for all x in the domain of f.

Example.

- (1) f(x) = 2x on $0 \le x < 1$,
- (2) $g(x) = \frac{1}{x}$ for $0 < x \le 1$ and g(0) = 0.

Local (relative) maximum, minimum. f(c) is a local(relative) maximum (minimum) value of f if there is an open interval I contains c such that f(c) > (<)f(x) for all $x \in I$.

Theorem. If f is differentiable at c and f(c) is a local extremum value of f, then f'(c) = 0.

Critical point. A point c is a critical point of f if either f'(c) = 0 or f is not differentiable at c.

Theorem. Suppose that f(c) is a global extremum value of f on [a, b], then either c is a critical point of f or c is a or b.

Example.

- (1) $\frac{3}{5}x(30-x)$ on [0,30],
- (2) $2x^3 3x^2 12x + 15$ on [0, 3],
- (3) 3 |x 2| on [1, 4],
- (4) $5x^{\frac{2}{3}} x^{\frac{5}{3}}$ on [-1, 4],
- (5) $4x^4 11x^2 5x 3$ on [-3, 3].

3.6 Applied Optimization Problems

Example.

- (1) Example 1 p.156 2x + y = 200, A = xy,
- (2) Example 2 p.157 V = x(8-2x)(5-2x),
- (3) C(x) = a + bx, x = m np(x), P(x) = xp(x) C(x)
- (4) Example 3 p.158 a = 10,000, b = 8, p(7000) = 13, p(5000) = 15,
- (5) Example 4 p.159 $C = 300\pi, V = \pi r^2 h, 4\pi r^2 + 2\pi r h = C$,
- (6) Example 5 p.160 $A = 4xy, x^2 + y^2 = r^2$,
- (7) Principle of refraction Exercise 48 p.167.

3.7 Derivatives of Trigonometric Functions

Theorem.

- (1) $D_x(\sin x) = \cos x$,
- (2) $D_x(\cos x) = -\sin x.$

Corollary.

- (1) $D_x \tan x = \sec^2 x$,
- (2) $D_x \cot x = -\csc^2 x$,
- (3) $D_x \sec x = \tan x \sec x$,
- (4) $D_x \csc x = -\cot x \csc x$.

Example.

- (1) $x^2 \sin x$,
- (2) $\frac{\cos x}{1-\sin x}$,
- (3) $\cos^3 t$,
- (4) $(2 \cos t)^{\frac{2}{3}}$,

(5) Tangent line to $y = \cos^2 x$ at x = 0.5, $y(0.5) \approx 0.7702$, $y'(0.5) \approx -0.8415$. (6) $x \tan x$, $\cot^3 x$, $\frac{\sec z}{\sqrt{z}}$, (7) $2 \sin 10t + 3 \cos \pi t$, (8) $\sin^3 x \cos^4 5x$, (9) $\sqrt{x} \cos \sqrt{x}$, (10) $\sin^2(2x - 1)^{\frac{3}{2}}$, (11) $\tan 2x^3$, $\cot^3 2t$, $\sec \sqrt{y}$, $\sqrt{\csc x}$, (12) Example 12 p.174 $\tan \theta = \frac{y}{5}$, $\frac{d\theta}{dt} = 3^\circ$, $\theta = 60^\circ$, $\frac{dy}{dt} = ?$, (13) Example 13 p.175 $A = 2r \cos \theta \sin \theta$.

3.8 Exponential and Logarithimic Functions

Example.(1) P(0) = 1, P(1) = 2 then $P(\frac{q}{p}) = 2^{\frac{q}{p}}$, so $P(t) = 2^{t}$. **Laws of Exponents.** $a^{r+s} = a^{r} \cdot a^{s}$, $a^{-r} = \frac{1}{a^{r}}$, $(a^{r})^{s} = a^{rs}$, $a^{r} \cdot b^{r} = (a \cdot b)^{r}$ **Derivate of** a^{x} . $\lim_{h \to 0} \frac{a^{x+h} - a^{x}}{h} = a^{x} \lim_{h \to 0} \frac{a^{h} - 1}{h} = m(a)a^{x}$. Let e be the real number such that m(e) = 1, then e^{x} also be written as $\exp(x)$

Example.

- (1) a. $D_x(x^2e^{-x})$, b. $D_x\frac{e^{2x}}{2x+1}$,
- (2) Find the maxima of (1) a.

Inverse function. f has an inverse function g if f(x) = y iff g(y) = x. A function f has an inverse function iff f is an one to one function.

Example.

(1) $f = x + 1, 2x, \frac{1}{x}$ then $g = y - 1, \frac{y}{2}, \frac{1}{y},$ (2) $x^2,$ (3) $x^3.$

Increasing functions, Decreasing functions. A function f defined on an intervalI is increasing (decreasing) function if for all $a < b, a, b \in I$ f(a) < (>)f(b).

Theorem. Suppose that f is an one to one continuous function on an interval I, then f is either increasing or decreasing on I.

Lemma. Suppose that f is an one to one continuous function on an interval I. And suppose that $a < b, a, b \in I$ and f(a) < f(b), then for $x, y, z \in I$ such that x < a < y < b < z we have f(x) < f(a) < f(y) < f(b) < f(z).

Theorem. Suppose that f is an one to one continuous function on an interval I, then f^{-1} is also continuous.

Proof. Assume f is increasing and let f(a) = b, then $f^{-1}(b) = a$. For given small $\epsilon > 0$, let $b_1 = f(a - \epsilon), b_2 = f(a + \epsilon)$. Let $\delta = \min(|b - b_1|, |b - b_2|, \text{ then for } |y - b| < \delta$, we have $b_1 < y < b_2$. Which implies $a - \epsilon < f^{-1}(y) < a + \epsilon$.

Theorem. Suppose that f is an one to one continuous function on an interval I and f is differentiable at $a \in I$ and $f'(a) \neq 0$. Let f(a) = b, then f^{-1} is differentiable at b and $(f^{-1})'(b) = \frac{1}{f'(a)}$.

Proof. Let f(a) = b, then $f^{-1}(b) = a$. Now let $h = f^{-1}(b+k) - f^{-1}(b)$, since b is fixed, h is a continuous function of k and f(a+h) = b+k.

$$\lim_{k \to 0} \frac{f^{-1}(b+k) - f^{-1}(b)}{k} = \lim_{k \to 0} \frac{h}{f(a+h - f(a))}$$

for $k \to 0$ implies $h \to 0$ and the last limit is just $\frac{1}{f'(a)}$.

Natural Logarithm. $\ln x = y$ iff $e^y = x$, $\ln ab = \ln a + \ln b$, $\ln \frac{1}{a} = -\ln a$, $\ln a^r = r \ln a$, $(\ln x)' = \frac{1}{x}$.

Example.

(1) $D_x(\frac{\ln x}{x}), D_x(\ln |x|) = \frac{1}{x},$ (2) $D_x(\ln(1+x^2)),$ (3) $D_x(\sqrt{1+\ln x}),$ (4) $D_x \ln \sqrt{\frac{2x+3}{4x+5}}.$

Logerithmic Differentiation.

Example.

(1) $D_x \frac{(x^2+1)^{\frac{3}{2}}}{(x^3+1)^{\frac{4}{3}}},$ (2) $D_x(x^{x+1}).$

3.9 Implicit Differentiation and Related Rates

Implicit Differentiation. Suppose that f(x, y) = c defines y as a function of x, apply differentiation laws to the equation, you can solve $\frac{dy}{dx}$.

Example.

(1)
$$x - y^2 = 0,$$

(2) $x^2 + y^2 = 100,$
(3) $x^3 + y^3 = 3xy,$
(4) $\sin(x + 2y) = 2x \cos y$

Related Rates. Suppose that f(x(t), y(t)) = c defines a relation of y(t) and x(t), apply differentiation laws to the equation, you can get a relation of $\frac{dt}{dt}$ and $\frac{dy}{dt}$.

Example.

(1) Example 5 p.197 $x^2 + y^2 = 25, x = 3, y = 4, x' = 12, y' = ?$,

- (2) Example 6 p.197 $z^2 = 9 + y^2, z' = 500, z = 5, y' = ?$, (3) Example 7 p.198 $\frac{18}{z} = \frac{6}{z-x}, x' = 8, z' = ?$, (4) Example 8 p.199 $u^2 = x^2 + y^2, v^2 = (6 x)^2 + y^2, u(1) = 5 = v(1), u'(1) = 28, v'(1) = 4, x(1) = ?, y(1) = ?, x'(1) = ?, y'(1) = ?$.

3.10 Successive Approximation, Newton's Method

Convergence of Approximation. We asy a sequence of approximation $\{x_1, x_2, x_3, \dots\}$ converges to the number r provided for any $\epsilon > 0$ there is $N(\epsilon)$ such that $n \ge N(\epsilon)$ implies $||x_n - r|| < \epsilon.$

Newton's iteration formula. $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$.

Example. $f(x) = x^{\frac{1}{3}}$.

Theorem. Suppose that $|f''| < M, |f'| > \frac{1}{K}$, then $|x_{n+1} - x_0| \le KM |x_n - x_0|^2$.