CHAPTER 12, PARTIAL DIFFERENTIATION

12.2 Function of Several Variables

Example.

(1)
$$\sqrt{25 - x^2 - y^2}$$
,
(2) $\frac{y}{\sqrt{x - y^2}}$,
(3) $\frac{x + yz}{\sqrt{x^2 + y^2}}$,
(4) $\frac{\exp[-\frac{x^2 + y^2 + z^2}{4kt}]}{4\pi kt}$.

Graph. $\{(x, y, f(x, y)) : (x, y) \in D\}$

Example.

(1)
$$z = 2 - \frac{1}{2}x - \frac{1}{2}y$$
,
(2) $z = y^2 + x^2$,
(3) $z = \frac{1}{2}\sqrt{4 - 4x^2 - y^2}$,

Level Curves, Surfaces. $C_d = \{((x, y) : f(x, y) = d\}, S_d = \{(x, y, z) : f(x, y, z) = d\}.$

Example.

 $\begin{array}{ll} (1) & 25-x^2-y^2, \\ (2) & y^2-x^2, \\ (3) & x^2+y^2-z^2. \end{array}$

12.3 Limit and Continuouity

Limits.

Definition.

$$\lim_{(x,y)\to(a,b)}f(x,y)=L$$

if and only if for any $\epsilon > 0$ there is a $\delta > 0$ such that,

$$0 < |(x,y) - (a,b)| < \delta$$
, implies $|f(x,y) - L| < \epsilon$.

Example.

- (1) $\lim_{(x,y)\to(2,3)} xy = 6,$ (2) $\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2} = 1.$

Typeset by \mathcal{AMS} -TFX

Continuity.

Definition. f(x, y) is continuous at (a, b) if

$$\lim_{(x,y)\to(a,b)}f(x,y)=f(a,b)$$

Laws of limits and Continuity.

Theorem. Suppose that $\lim_{(x,y)\to(a,b)} f(x,y) = L$, $\lim_{(x,y)\to(a,b)} g(x,y) = M$, then

- (1) $\lim_{(x,y)\to(a,b)}(f(x,y) + g(x,y)) = L + M$,
- (2) $\lim_{(x,y)\to(a,b)} f(x,y) \cdot g(x,y) = LM,$
- (3) $\lim_{(x,y)\to(a,b)} f(x,y)/g(x,y) = L/M$ if $M \neq 0$.

Remark. The squeeze law and the substituition law is also true for function of several variables.

Example.

(1) Polynomials $2x^4y^2 - 7xy + 4x^2y^3 + 35$, (2) $\frac{\sin(x^2+y^2)}{x^2+y^2}$ if $(x,y) \neq (0,0)$ and 1 if (x,y) = (0,0), (3) $e^{xy} + \sin\frac{y}{4} + xy \ln\sqrt{y-x}$, (4) $\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}} = 0$, (5) $\frac{xy}{x^2+y^2}$, (6) $\frac{xy^2}{x^2+y^4}$.

12.4 Partial Derivatives

Definition. $f_x(x,y) = \frac{\partial f}{\partial x}(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$, provide the limit exists, and is called the partial derivative of f with respect to x.

Example.

(1)
$$x^2 + 2xy^2 - y^3$$
,
(2) $(x^2 + y^2)e^{-xy}$.

Instaneous Rates of Change.

Example.

(1) $V = \frac{(82.06)T}{p}$.

Geometric Interpretation.

Example.

(1)
$$5xye^{-x^2-2y^2}$$
.

Theorem. Suppose that f has continuous partial derivatives near (a, b), then the plane contains $(1, 0, f_x(a, b))$ and $(0, 1, f_y(a, b))$ contains all vectors that is tangent to a curve on z = f(x, y). This plane is called the tangent plane of the graph z = f(x, y) at (a, b).

Since $\mathbf{n} = (1, 0, f_x) \times (0, 1, f_y) = (-f_x, -f_y, 1)$ the equation of the tangent is

$$z = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b).$$

If r(t) is a curve on on the graph of f(x,y) such that $r(0) = (x_0, y_0, f(x_0, y_0))$, then $r'(0) = (x'(0), y'(0), f_x(x_0, y_0)x'(0) + f_y(x_0, y_0)y'(0)).$

Example.

(1) $z = 5 - 2x^2 - y^2$ at (1, 1, 2), (2) $z = \sin xy e^{uv}$.

Higher Derivatives.

Example.

(1)
$$x^2 + 2xy^2 - y^3$$
,
(2) $\frac{x^3y - xy^3}{x^2 + y^2}$.

Remark. If f_x, f_y, f_{xy}, f_{yx} are continuous, then $f_{xy} = f_{yx}$.

12.5 Multivariables Optimization Problems

Theorem. Suppose that f is a continuous function on a bounded closed region D, then f takes both maximum and minimum values on D.

Example.(Closed domain)

(1) $D = \{(x, y) : x^2 + y^2 \le 1\},\$ (2) $D = \{(x, y) : x^2 \le 1, y^2 \le 1\}.$

Definition. Local extremum.

Theorem. Suppose that f has local extremum at (a, b) and the partial derivatives exist at (a, b), then $f_x(a, b) = 0 = f_y(a, b)$.

Example.

- (1) $f(x,y) = x^2 + y^2, g(x,y) = 1 x^2 y^2, h(x,y) = x^2 y^2,$ (2) $z = \frac{3}{4}y^2 + \frac{1}{24}y^3 \frac{1}{32}y^4 x^2,$
- (3) Global extrema of $\sqrt{x^2 + y^2}$ over $\{(x, y) : x^2 + y^2 \le 1\}$,
- (4) Global extrema of xy x y + 3 over $\{(x, y) : 0 \le x \le 2\}, 0 \le y \le 4 + 2x\}$, (5) Highest point of $z = \frac{8}{3}x^3 + 4y^3 x^4 y^4$,
- (6) When V = 48, FB=1\$, TB=2\$, LR=3\$,
- (7) f(x, y, z) = xy + yz xz.

12.6 Increment, Linear Approximation and Differentiablity

Increment.

$$\triangle f = f(x+h, y+k) - f(x, y).$$

Differential.

$$df = f_x(x, y)dx + f_y(x, y)dy$$

Example.

- (1) $x^2 + 3xy 2y^2$, (3,5) \rightarrow (3.2,4.9), $\triangle f = 5.26$, df = 5.3, (2) $\sqrt{2(2.02)^3 + (2.97)^2}$,
- (3) dV = yzdx + xzdy + xydz.

Definition. $\nabla f = (f_x, f_y)$ is called the gradient of f.

Theorem. Suppose that f has continuous partial derivatives near \mathbf{a} , then

$$f(\mathbf{a} + \mathbf{h}) = f(\mathbf{a}) + \nabla f(\mathbf{a}) \cdot \mathbf{h} + \epsilon(\mathbf{h}) \cdot \mathbf{h},$$

where $\epsilon(\mathbf{h})$ is a vector valued function which goes to zero as $\mathbf{h} \to \mathbf{0}$.

Definition. *f* is differentiable at **a** if

$$f(\mathbf{a} + \mathbf{h}) = f(\mathbf{a}) + \nabla f(\mathbf{a}) \cdot \mathbf{h} + \epsilon(\mathbf{h}),$$

where $\frac{\epsilon(\mathbf{h})}{|\mathbf{h}|} \to 0$ as $\mathbf{h} \to 0$.

Remark. If f has continuous partial derivatives near **a** then f is differentiable at **a**.

Example. $f(x,y) = \frac{x^3 + y^3}{x^2 + y^2}$ for $(x,y) \neq (0,0)$ and f(0,0) = 0

12.7 Multivariables Cahin Rule

Theorem. Suppose that f is differentiable at (a, b) and $\phi(t), \psi(t)$ are differentiable at t_0 with $\phi(t_0) = a, \psi(t_0) = b$, then $g(t) = f(\phi(t), \psi(t))$ is differentiable at t_0 and

$$\frac{dg}{dt}(t_0) = f_x(\phi(t_0), \psi(t_0))\phi'(t_0) + f_y(\phi(t_0), \psi(t_0))\psi'(t_0)$$

Example.

 $\begin{array}{ll} (1) & w = e^{xy}, x = t^2, y = t^3, \\ (2) & V = \pi r^2 h, \frac{dh}{dt} = -3, \frac{dr}{dt} = -1, h = 40, r = 15, \frac{dV}{dt} = ?, \\ (3) & w = x^2 + z e^y + \sin xz, x = t, y = t^2, z = t^3. \end{array}$

Theorem. (Chain Rule for Several Variables) Suppose that $f(u_1, u_2, \dots, u_m)$ is differentiable and $u_j(x_1, x_2, \dots, x_n)$ are differentiable, then $g(x_1, x_2, \dots, x_n) = f(\dots, u_j(x_1, x_2, \dots, x_n), \dots)$ is differentiable and

$$\frac{\partial g}{\partial x_i}(x_1, x_2, \cdots, x_n) = \sum_{j=1}^m f_{u_j}(\cdots, u_k(x_1, x_2, \cdots, x_n) \cdots)(u_j)_i(x_1, x_2, \cdots, x_n)$$

Example.

 $\begin{array}{ll} (1) & z = f(u,v), u = 2x + y, v = 3x - 2y, (u,v) = (3,1), (x,y) = (1,1), \frac{\partial z}{\partial u} = 3, \frac{\partial z}{\partial v} = -2, \\ (2) & w = f(x,y), \frac{\partial w}{\partial r}, \frac{\partial w}{\partial \theta}, \frac{\partial^2 w}{\partial r^2}, \\ (3) & w = f(u,v,x,y), u(x,y), v(x,y), \\ (4) & z = f(x,y), x(t), y(t), z(t), T = (x',y',z'), n = (z_x, z_y, -1). \end{array}$

Theorem. (Mean Value Theorem) Suppose that f(x, y) is differentiable on a covex domain D. For $P, Q \in D$

$$F(P) - f(Q) = \nabla f(R) \cdot (P - Q),$$

for some R on the line from Q to P.

Remark. The key part of the Mean value theorem is that f is differentiable on the line from P to Q. Consider the example $f(x, y) = \frac{1}{x^2 + y^2}$, for $(x, y) \neq (0, 0)$ P = (-1, 0), Q = (1, 0).

Theorem. (Implicit Function Theorem) Suppose that $F(x_1, x_2, \dots, x_n, y)$ is continuously differentiable near (\mathbf{a}, b) and $F(\mathbf{a}, b) = 0$. If $F_y(\mathbf{a}, b) \neq 0$, then there exists a continuously differentiable function $g(x_1, x_2, \dots, x_n)$ near \mathbf{a} such that $g(\mathbf{a}) = b$ and $F(\mathbf{x}, g(\mathbf{x})) \equiv 0$. Further more

$$\frac{\partial g}{\partial x_i}(\mathbf{x}) = -\frac{F_{x_i}(\mathbf{x}, g(\mathbf{x}))}{F_y(\mathbf{x}, g(\mathbf{x}))}.$$

Corollary. Suppose that ∇f does not vanish on the level surface f = 0, then the level surface is a smooth surface.

Example.

(1) $x^3 + y^3 - 3xy = 0,$ (2) $x^4 + y^4 + z^4 + 4x^2y^2z^2 - 34 = 0.$

Chain Rule in Matrix Form. Suppose that $f(u_1, u_2, \dots, u_m)$ is differentiable and $u_j(x_1, x_2, \dots, x_n)$ are differentiable, then $g(x_1, x_2, \dots, x_n) = f(\dots, u_j(x_1, x_2, \dots, x_n), \dots)$ is differentiable and

$$\nabla_x g = \nabla_u f \cdot \begin{bmatrix} \frac{\partial u_1}{\partial x_1} & \cdots & \frac{\partial u_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial u_m}{\partial x_1} & \cdots & \frac{\partial u_m}{\partial x_n} \end{bmatrix}.$$

Example. $\begin{bmatrix} \frac{\partial w}{\partial r} & \frac{\partial w}{\partial \theta} \end{bmatrix} = \begin{bmatrix} \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} \end{bmatrix} \cdot \begin{bmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{bmatrix}.$

12.8 Directional Derivatives and Gradient

Definition.

$$D_{\mathbf{u}}f(\mathbf{x}) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{u}) - f(\mathbf{x})}{t},$$

is the directional derivative of f along the direction \mathbf{u} . It is the instantaneous rate of change of f at \mathbf{x} along the direction \mathbf{u} .

Theorem. If f is differentiable at \mathbf{x} , then $D_{\mathbf{u}}f(\mathbf{x}) = \nabla f(\mathbf{x}) \cdot \mathbf{u}$.

Example.

- (1) $T = \frac{1}{180} [7400 4x 9y 0.03xy], P(200,200), \mathbf{v} = (3,4),$ (2) $\nabla f, f = yz + \sin xz + e^{xy}, (0,7,3),$ (3) As in (1) s = 5,
- (4) $T = \frac{1}{180} [7400 4x 9y 0.03xy] 2z$, P(200,200,5), $\mathbf{v} = (3, 4, -12)$, s = 3,
- (5) As in (4) The direction with the most ripid increasing.

Normal Direction of F = c.

Example.

- (1) $2x^2 + 4y^2 + z^2 = 45$ at P(2,-3,-1),
- (2) Tangent at P(1,-1,2) to the intersection of $x^2 + y^2 z = 0$ and $2x^2 + 3y^2 + z^2 9 = 0$,
- (3) Tangent at (1,2) to $2x^3 + 2y^3 9xy = 0$.

12.9 LAGRANGE MULTIPLIER AND CINSTRAINED OPTIMIZATIOM

Theorem. (Lagrange Multiplier) Suppose that f(x, y), g(x, y) are continuously differentiable functions. If the maximum (minimum) value of f subject to the constraint g(x, y) = 0 coccurs at a point P where $\nabla g(P) \neq \mathbf{0}$, then

$$\nabla f(P) = \lambda \nabla g(P)$$

for some λ .

Example.

(1)
$$f = \sqrt{x^2 + y^2}, xy - 1 = 0,$$

(2) $f = 4xy, \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,$
(3) $f = 8xyz, \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$

Theorem. (Lagrange Multiplier with Two Constraints) Suppose that f(x, y, z), g(x, y, z), h(x, y, z) are continuously differentiable functions. If the maximum (minimum) value of f subject to the constraint g(x, y, z) = 0, h(x, y, z) = 0 coccurs at a point P where $\nabla g(P)$ and $\nabla h(P)$ are independent, then

$$\nabla f(P) = \lambda \nabla g(P) + \mu \nabla h(P)$$

for some λ, μ .

Example.

$$\begin{array}{ll} (1) & x+y+z=12, z=x^2+y^2 \ f=z, \\ (2) & x+y+z=1, x^2+y^2+z^2=1 \ \text{and} \ f=x^3+y^3+z^3, \\ (3) & \frac{x_1+\cdots+x_n}{n} \geq (x_1\cdots x_n)^{1/n} \ \text{for} \ x_i>0, i=1, \cdots n, \\ (4) & f(x,y,z)=2x+2y+z, \sqrt{x^2+y^2} \leq z \leq \sqrt{4-x^2-y^2}. \end{array}$$

12.10 Critical Point of Function of Two Variables

Taylor Polynomial of Function of Two variables.

$$P_n(x,y) = f(0,0) + \sum_{n=1}^m \frac{1}{n!} \left[\sum_{0}^n \binom{n}{k} \frac{\partial^n f}{\partial^k x \partial^{n-k} y}(0,0) x^k y^{n-k}\right].$$

Theorem. Suppose that f_{xy} and f_{yx} are continuous, then $f_{xy}(a,b) = f_{yx}(a,b)$.

Critical Point of Function of Two Variables. Suppose that (0,0) is a critical point of f, let $A = f_{xx}(0,0), B = f_{xy}(0,0), C = f_{yy}(0,0)$ and $\Delta = AC - B^2$. Then the Taylor polynomial of f at (0,0) of order two is

$$f(0,0) + \frac{1}{2}A[(x + \frac{B}{A}y)^2 + \frac{\Delta}{A^2}],$$

so we have the following conclusions

- (1) If $\Delta > 0, A > 0$ then f(0,0) is local minimum.
- (2) If $\Delta > 0, A < 0$ then f(0,0) is local maximum.
- (3) If $\Delta < 0$ then f(0,0) is neither local maximum nor local minimum.

Example.

- (1) $3x x^3 3xy^2$,
- (2) $6xy^2 2x^3 3y^4$.