
CHAPTER 12, PARTIAL DIFFERENTIATION

12.2 Function of Several Variables

Example.

(1)
√

25 − x2 − y2,
(2) y√

x−y2
,

(3) x+yz√
x2+y2

,

(4) exp[−x2+y2+z2

4kt ]

4πkt .

Graph. {(x, y, f(x, y)) : (x, y) ∈ D}
Example.

(1) z = 2 − 1
2x− 1

2y,

(2) z = y2 + x2,

(3) z = 1
2

√
4 − 4x2 − y2,

Level Curves, Surfaces. Cd = {((x, y) : f(x, y) = d}, Sd = {(x, y, z) : f(x, y, z) = d}.
Example.

(1) 25 − x2 − y2,
(2) y2 − x2,
(3) x2 + y2 − z2.

12.3 Limit and Continuouity

Limits.

Definition.
lim

(x,y)→(a,b)
f(x, y) = L

if and only if for any ε > 0 there is a δ > 0 such that,

0 < |(x, y) − (a, b)| < δ, implies |f(x, y) − L| < ε.

Example.

(1) lim(x,y)→(2,3)xy = 6,

(2) lim(x,y)→(0,0)
sin(x2+y2)

x2+y2 = 1.
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Continuity.

Definition. f(x, y) is continuous at (a, b) if

lim
(x,y)→(a,b)

f(x, y) = f(a, b).

Laws of limits and Continuity.

Theorem. Suppose that lim(x,y)→(a,b) f(x, y) = L, lim(x,y)→(a,b) g(x, y) = M , then

(1) lim(x,y)→(a,b)(f(x, y) + g(x, y)) = L+M ,
(2) lim(x,y)→(a,b) f(x, y) · g(x, y) = LM ,
(3) lim(x,y)→(a,b) f(x, y)/g(x, y) = L/M if M �= 0.

Remark. The squeeze law and the substituition law is also true for function of several
variables.

Example.

(1) Polynomials 2x4y2 − 7xy + 4x2y3 + 35,
(2) sin(x2+y2)

x2+y2 if (x, y) �= (0, 0) and 1 if (x, y) = (0, 0),
(3) exy + sin y

4 + xy ln
√
y − x,

(4) lim(x,y)→(0,0)
xy√

x2+y2
= 0,

(5) xy
x2+y2 ,

(6) xy2

x2+y4 .

12.4 Partial Derivatives

Definition. fx(x, y) = ∂f
∂x

(x, y) = limh→0
f(x+h,y)−f(x,y)

h
, provide the limit exists, and is

called the partial derivative of f with respect to x.

Example.

(1) x2 + 2xy2 − y3,
(2) (x2 + y2)e−xy.

Instaneous Rates of Change.

Example.

(1) V = (82.06)T
p .

Geometric Interpretation.

Example.

(1) 5xye−x2−2y2
.
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Theorem. Suppose that f has continuous partial derivatives near (a, b), then the plane
contains (1, 0, fx(a, b)) and (0, 1, fy(a, b)) contains all vectors that is tangent to a curve on
z = f(x, y). This plane is called the tangent plane of the graph z = f(x, y) at (a, b).

Since n = (1, 0, fx) × (0, 1, fy) = (−fx,−fy , 1) the equation of the tangent is

z = f(a, b) + fx(a, b)(x − a) + fy(a, b)(y − b).

If r(t) is a curve on on the graph of f(x, y) such that r(0) = (x0, y0, f(x0 , y0)), then
r′(0) = (x′(0), y′(0), fx(x0, y0)x′(0) + fy(x0, y0)y′(0)).

Example.

(1) z = 5 − 2x2 − y2 at (1, 1, 2),
(2) z = sinxyeuv.

Higher Derivatives.

Example.

(1) x2 + 2xy2 − y3,
(2) x3y−xy3

x2+y2 .

Remark. If fx, fy , fxy.fyx are continuous, then fxy = fyx.

12.5 Multivariables Optimization Problems

Theorem. Suppose that f is a continuous function on a bounded closed region D , then
f takes both maximum and minimum values on D.

Example.(Closed domain)

(1) D = {(x, y) : x2 + y2 ≤ 1},
(2) D = {(x, y) : x2 ≤ 1, y2 ≤ 1}.

Definition. Local extremum.

Theorem. Suppose that f has local extremum at (a, b) and the partial derivatives exist
at (a, b), then fx(a, b) = 0 = fy(a, b).

Example.

(1) f(x, y) = x2 + y2, g(x, y) = 1 − x2 − y2, h(x, y) = x2 − y2,
(2) z = 3

4y
2 + 1

24y
3 − 1

32y
4 − x2,

(3) Global extrema of
√
x2 + y2 over {(x, y) : x2 + y2 ≤ 1},

(4) Global extrema of xy − x− y + 3 over {(x, y) : 0 ≤ x ≤ 2), 0 ≤ y ≤ 4 + 2x},
(5) Highest point of z = 8

3x
3 + 4y3 − x4 − y4,

(6) When V = 48, FB=1$, TB=2$, LR=3$,
(7) f(x, y, z) = xy + yz − xz.
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12.6 Increment, Linear Approximation and Differentiablity

Increment.
�f = f(x+ h, y + k) − f(x, y).

Differential.
df = fx(x, y)dx + fy(x, y)dy.

Example.

(1) x2 + 3xy − 2y2, (3, 5) → (3.2, 4.9),�f = 5.26, df = 5.3,
(2)

√
2(2.02)3 + (2.97)2,

(3) dV = yzdx+ xzdy + xydz,

Definotion. ∇f = (fx, fy) is called the gradient of f .

Theorem. Suppose that f has continuous partial derivatives near a, then

f(a + h) = f(a) + ∇f(a) · h + ε(h) · h,

where ε(h) is a vector valued function which goes to zero as h → 0.

Definition. f is differentiable at a if

f(a + h) = f(a) + ∇f(a) · h + ε(h),

where ε(h)
|h| → 0 as h → 0.

Remark. If f has continuous partial derivatives near a then f is differentiable at a.

Example.f(x, y) = x3+y3

x2+y2 for (x, y) �= (0, 0) and f(0, 0) = 0

12.7 Multivariables Cahin Rule

Theorem. Suppose that f is differentiable at (a, b) and φ(t), ψ(t) are differentiable at t0
with φ(t0) = a, ψ(t0) = b, then g(t) = f(φ(t), ψ(t)) is differentiable at t0 and

dg

dt
(t0) = fx(φ(t0), ψ(t0))φ′(t0) + fy(φ(t0), ψ(t0))ψ′(t0).

Example.

(1) w = exy, x = t2, y = t3,
(2) V = πr2h, dh

dt = −3, dr
dt = −1, h = 40, r = 15, dV

dt =?,
(3) w = x2 + zey + sinxz, x = t, y = t2, z = t3.
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Theorem. (Chain Rule for Several Variables) Suppose that f(u1, u2, · · · , um) is differen-
tiable and uj(x1, x2, · · · , xn) are differentiable , then g(x1, x2, · · · , xn) = f(· · · , uj(x1 , x2, · · · , xn), · · · )
is differentiable and

∂g

∂xi
(x1, x2, · · · , xn) =

m∑
j=1

fuj (· · · , uk(x1, x2, · · · , xn) · · · )(uj)i(x1, x2, · · · , xn).

Example.
(1) z = f(u, v), u = 2x+ y, v = 3x− 2y, (u, v) = (3, 1), (x, y) = (1, 1), ∂z

∂u = 3, ∂z
∂v = −2,

(2) w = f(x, y), ∂w
∂r ,

∂w
∂θ ,

∂2w
∂r2 ,

(3) w = f(u, v, x, y), u(x, y), v(x, y),
(4) z = f(x, y), x(t), y(t), z(t), T = (x′, y′, z′), n = (zx, zy,−1).

Theorem. (Mean Value Theorem) Suppose that f(x, y) is differentiable on a covex do-
main D. For P,Q ∈ D

F (P ) − f(Q) = ∇f(R) · (P −Q),

for some R on the line from Q to P .

Remark. The key part of the Mean value theorem is that f is differentiable on the line
from P to Q. Consider the example f(x, y) = 1

x2+y2 , for (x, y) �= (0, 0) P = (−1, 0), Q =
(1, 0).

Theorem. (Implicit Function Theorem) Suppose that F (x1, x2, · · · , xn, y) is continuously
differentiable near (a, b) and F (a, b) = 0. If Fy(a, b) �= 0 , then there exists a continuously
differentiable function g(x1, x2, · · · , xn) near a such that g(a) = b and F (x, g(x)) ≡ 0.
Further more

∂g

∂xi
(x) = −Fxi(x, g(x))

Fy(x, g(x))
.

Corollary. Suppose that ∇f does not vanish on the level surface f = 0, then the level
surface is a smooth surface.

Example.
(1) x3 + y3 − 3xy = 0,
(2) x4 + y4 + z4 + 4x2y2z2 − 34 = 0.

Chain Rule in Matrix Form. Suppose that f(u1, u2, · · · , um) is differentiable and
uj(x1, x2, · · · , xn) are differentiable , then g(x1, x2, · · · , xn) = f(· · · , uj(x1, x2, · · · , xn), · · · )
is differentiable and

∇xg = ∇uf ·

⎡
⎢⎣

∂u1
∂x1

. . . ∂u1
∂xn

...
. . .

...
∂um

∂x1
. . . ∂um

∂xn

⎤
⎥⎦ .

Example.
[

∂w
∂r

∂w
∂θ

]
=

[
∂w
∂x

∂w
∂y

]
·
[

cos θ −r sin θ
sin θ r cos θ

]
.
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12.8 Directional Derivatives and Gradient

Definition.

Duf(x) = lim
t→0

f(x + tu) − f(x)
t

,

is the directional derivative of f along the direction u. It is the instantaneous rate of
change of f at x along the direction u.

Theorem. If f is differentiable at x, then Duf(x) = ∇f(x) · u.

Example.
(1) T = 1

180 [7400 − 4x− 9y − 0.03xy], P(200,200), v = (3, 4),
(2) ∇f, f = yz + sinxz + exy, (0, 7, 3),
(3) As in (1) s = 5,
(4) T = 1

180 [7400 − 4x− 9y − 0.03xy] − 2z, P(200,200,5), v = (3, 4,−12), s = 3,
(5) As in (4) The direction with the most ripid increasing.

Normal Direction of F = c.

Example.
(1) 2x2 + 4y2 + z2 = 45 at P(2,-3,-1),
(2) Tangent at P(1,-1,2) to the intersection of x2+y2−z = 0 and 2x2+3y2+z2−9 = 0,
(3) Tangent at (1,2) to 2x3 + 2y3 − 9xy = 0.

.

12.9 Lagrange Multiplier and Cinstrained Optimizatiom

Theorem. (Lagrange Multiplier) Suppose that f(x, y), g(x, y) are continuously differ-
entiable functions. If the maximum (minimum) value of f subject to tne constraint
g(x, y) = 0 cccurs at a point P where ∇g(P ) �= 0, then

∇f(P ) = λ∇g(P )

for some λ.

Example.

(1) f =
√
x2 + y2, xy − 1 = 0,

(2) f = 4xy, x2

a2 + y2

b2 = 1,

(3) f = 8xyz, x2

a2 + y2

b2 + z2

c2 = 1.

Theorem. (Lagrange Multiplier with Two Constraints) Suppose that f(x, y, z), g(x, y, z), h(x, y, z)
are continuously differentiable functions. If the maximum (minimum) value of f subject
to tne constraint g(x, y, z) = 0, h(x, y, z) = 0 cccurs at a point P where ∇g(P ) and ∇h(P )
are independent, then

∇f(P ) = λ∇g(P ) + μ∇h(P )
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for some λ, μ.

Example.

(1) x+ y + z = 12, z = x2 + y2 f = z,
(2) x+ y + z = 1, x2 + y2 + z2 = 1 and f = x3 + y3 + z3,
(3) x1+···+xn

n
≥ (x1 · · ·xn)1/n for xi > 0, i = 1, · · ·n,

(4) f(x, y, z) = 2x+ 2y + z,
√
x2 + y2 ≤ z ≤ √

4 − x2 − y2.

12.10 Critical Point of Function of Two Variables

Taylor Polynomial of Function of Two variables.

Pn(x, y) = f(0, 0) +
m∑

n=1

1
n!

[
n∑
0

(
n

k

)
∂nf

∂kx∂n−ky
(0, 0)xkyn−k.

Theorem. Suppose that fxy and fyx are continuous, then fxy(a, b) = fyx(a, b).

Critical Point of Function of Two Variables. Suppose that (0,0) is a critical point
of f , let A = fxx(0, 0), B = fxy(0, 0), C = fyy(0, 0) and � = AC − B2. Then the Taylor
polynomial of f at (0,0) of order two is

f(0, 0) +
1
2
A[(x+

B

A
y)2 +

�
A2

],

so we have the following conclusions
(1) If � > 0, A > 0 then f(0, 0) is local minimum.
(2) If � > 0, A < 0 then f(0, 0) is local maximum.
(3) If � < 0 then f(0, 0) is neither local maximum nor local minimum.

Example.
(1) 3x− x3 − 3xy2,
(2) 6xy2 − 2x3 − 3y4.


