CHAPTER 12, PARTIAL DIFFERENTIATION

12.2 FUNCTION OF SEVERAL VARIABLES

Example.

(1) V25— 22 — 3,

2) —L—,
(2)

(3) T+yYz ’

/12+y2
12+y2+22]

(4) 2Rkl

Graph. {(z,y, f(z,y)) : (z,y) € D}

Example.

(1) Zzz_%x_%ya
(2) z =y* + 22,

(3) z= %\/4—4332 — 12,

Level Curves, Surfaces. Cyq = {((z,y) : f(z,y) = d}, Sa ={(z,y,2) : f(x,y,z) = d}.

Example.
(1) 25— a2 — 2,
(2) y2 - 332,

(3) 22 +y* — 22

12.3 LimMiT AND CONTINUOUITY
Limits.

Definition.

flz,y) =1L

lim
(z,y)—(a,b)

if and only if for any € > 0 there is a d > 0 such that,
0<|(z,y) — (a,b)] <6, implies |f(z,y)—L|<e.

Example.

(1) lim(m,y)—>(2,3) xy = 6,
(2) lim (5 0,0) T =
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Continuity.

Definition. f(z,y) is continuous at (a,b) if

f(xvy) = f(av b)

lim
(z,y)—(a,b)

Laws of limits and Continuity.

Theorem. Suppose that lim, ) () f(7,y) = L,1im(g )~ (0,5 9(x,y) = M, then

(1) lim(m,y)—»(a,b)(f(xvy) + g(xay)) =L+ M:
(2) lim(ﬂ:,y)—%a,b) f(xvy) ' g(xvy) = LM;
(3) lim(z y)—(ap) f(2,9)/9(x,y) = L/M if M # 0.

Remark. The squeeze law and the substituition law is also true for function of several
variables.

Example.

(1) Polynomials 22*y? — Tzy + 422y + 35,

(2) SV if (2,5) # (0,0) and 1if (z,y) = (0,0),
(3) " +sind +ayln\/y — =z,

(4) Himg4)—(0,0) ﬁ =0,

(5) 2Ls,

(6) 3+

12.4 PARTIAL DERIVATIVES
f(z+h,y)—f(z,y)
0 h

Definition. f;(z,y) = gf (x,y) = limy,—, , provide the limit exists, and is

— Oz
called the partial derivative of f with respect to x.
Example.
(1) 33'2 + 233'y2 - y37
(2) (22 +y?)e V.
Instaneous Rates of Change.

Example.

(1) V= (82.06)1—'.

p

Geometric Interpretation.

Example.
2

(1) baye = —2v°.



CHAPTER 12, PARTIAL DIFFERENTIATION 3

Theorem. Suppose that f has continuous partial derivatives near (a,b), then the plane
contains (1,0, fz(a,b)) and (0,1, f,(a,b)) contains all vectors that is tangent to a curve on
z = f(x,y). This plane is called the tangent plane of the graph z = f(x,y) at (a,b).

Since n = (1,0, fz) x (0,1, fy) = (—fz, —fy, 1) the equation of the tangent is

2= f(a,b) + fola,b)(@ — a) + f, (a,b)(y - b).

If r(t) is a curve on on the graph of f(z,y) such that r(0) = (xo,yo0, f(x0,%0)), then
T/(O) = (x/(o)ay/(o)a fx(x()ayo)x/(o) + fy(x()ay())y/(o))'
Example.

(1) 2 =5—222 —y? at (1,1,2),
(2) z =sinaye™”.

Higher Derivatives.

Example.

(1) 33'2 + 233'y2 - y37
3, .3
(2) ==y,

Remark. If f., fy, fzy-fyz are continuous, then fr, = fy..

12.5 MULTIVARIABLES OPTIMIZATION PROBLEMS

Theorem. Suppose that f is a continuous function on a bounded closed region D , then
f takes both maximum and minimum values on D.

Example.(Closed domain)

(1) D ={(z,y) : 2 +y* < 1},
(2) D={(x,y):2* <1,y* <1}

Definition. Local extremum.

Theorem. Suppose that f has local extremum at (a,b) and the partial derivatives exist
at (a,b), then f;(a,b) =0 = f,(a,b).

Example.

(1) f(xvy) = 33'2 +y27g(xay) =1- 33'2 - y2,h(.’lf,y) = 33'2 - y27
(2) = =302+ 539° — 539" — 2%,

(3) Global extrema of y/22 + y? over {(z,y) : z* + y* < 1},
(4) Global extrema of xy —x —y + 3 over {(z,y) : 0 <z <2),0 <y <4+ 2z},
(5) Highest point of z = %xg’ + 4y — 2t —

(6) When V = 48, FB=1§, TB=2%, LR=38,

(7)

flz,y,2) =2y +yz — zz.
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12.6 INCREMENT, LINEAR APPROXIMATION AND DIFFERENTIABLITY

Increment.
Differential.

df = fo(z,y)dz + fy(z,y)dy.
Example.

(1) 22 + 3zy — 242, (3,5) — (3.2,4.9), Af = 5.26,df = 5.3,
(2) /2(2.02)3 + (2.97)2,
(3) dV = yzdx + zzdy + xydz,

Definotion. Vf = (f,, fy) is called the gradient of f.

Theorem. Suppose that f has continuous partial derivatives near a, then
fa+h) = f(a) + Vf(a)-h+e(h) b,

where €(h) is a vector valued function which goes to zero as h — 0.

Definition. f is differentiable at a if

f(a+h) = f(a) +Vf(a) -h+e(h),

where 6&1') —0 as h—0.

Remark. If f has continuous partial derivatives near a then f is differentiable at a.

Example.f(z,y) = T for (x,y) # (0,0) and f(0,0) =0

I2+y2

12.7 MULTIVARIABLES CAHIN RULE

Theorem. Suppose that f is differentiable at (a,b) and ¢(t),(t) are differentiable at to
with ¢(to) = a,¥(tg) = b, then g(t) = f(p(t),v(t)) is differentiable at ty and

dg

= (t0) = fa(&(t0), ¥ (t0))@' (t0) + fy ($(t0), ¥(t0))¢' (to).

Example.

(1) w=e",a=12y=t,
(2) V=mr?h, % = 3 48 = 1 h =40,r = 15, 2¥ =7,
(3) w=2a2%+z2¢Y +sinxz,x =t,y =122 =13,
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Theorem. (Chain Rule for Several Variables) Suppose that f(ui,ua,- - ,uy,) is differen-

tiable and uj(x1,x2,- - - ,x,) are differentiable , then g(z1,z2, -+ ,xn) = f(--- ,uj(x1, 2, -
is differentiable and
0
6:5, (z1,22,++ @ quj K1, 2, s an) ) (ug)i(T1, 02,0+, T).
Example.
(1) c = f(u ’U) u = 2x+y,v - 3x—2y, (u,v) = (3,1),(:1:,3;) = (171)7 g_ = 37 gi = _27
(2) w=f(z,9), 52, 55, 5,
(3) w= flu,v,z,9),u(z,y),v(z,y),
(4) 2 ( ), 2(t),y(t),2(t), T = (2, ¥, 2'),n = (22, 2, —1).

Theorem. (Mean Value Theorem) Suppose that f(x,y) is differentiable on a covex do-
main D. For P,QQ € D

F(P) - f(Q) =Vf(R)- (P —-Q),
for some R on the line from @) to P.

Remark. The key part of the Mean value theorem is that f is differentiable on the line
from P to Q. Consider the example f(z,y) = 2+y2, for (z,y) # (0,0) P = (—1,0),Q =

(1,0).

Theorem. (Implicit Function Theorem) Suppose that F(x1,x2, -+ ,Zn,y) is continuously
differentiable near (a,b) and F'(a,b) = 0. If F})(a,b) # 0 , then there exists a continuously
differentiable function g(x1,x2,--- ,zy) near a such that g(a) = b and F(x,¢g(x)) = 0.

Further more
g (x) = Fu(x9(x)
6331' Fy(X7 g(X))

Corollary. Suppose that V f does not vanish on the level surface f = 0, then the level
surface is a smooth surface.

Example.

(1):)3 +y 3:z:y—0
(2) 2t +y* + 21 + 4229?22 — 34 = 0.

Chain Rule in Matrix Form. Suppose that f(u1,ug, - ,u,) is differentiable and
uj(x1, e, -, zy) are differentiable , then g(z1, x2, - ,xn) = f(--- ,uj(x1,22, - ,2pn), )
is differentiable and

ouq Oui

e

Bum 8um

iR
Example [a—w 8—"’}— ou gu] | oSO —rsing
Pl€.- 15 @0l = |8z oy sinf@ rcosf
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12.8 DIRECTIONAL DERIVATIVES AND GRADIENT

Definition.

D) — 1oy L0 0 1)

t—0 t ’

is the directional derivative of f along the direction u. It is the instantaneous rate of
change of f at x along the direction u.

Theorem. If f is differentiable at x, then Dy f(x) = Vf(x) - u

Example.
1) T = 180 (7400 — 4z — 9y — 0.03zy], P(200,200), v = (3,4),
(2) Vf,f =yz+sinzz + €Y, (0,7,3),
(3) Asin (1) s =5,
(4) T = 1:[7400 — 42 — 9y — 0.03zy] — 22, P(200,200,5), v = (3,4, ~12),s = 3,
(5) As in (4) The direction with the most ripid increasing.

Normal Direction of F = c.

Example.
(1) 222 + 4y? + 22 = 45 at P(2,-3,-1),
(2) Tangent at P(1,-1,2) to the intersection of % +y*—2z = 0 and 222 +3y*+2%2 -9 = 0,
(3) Tangent at (1,2) to 223 + 2y% — 9zy = 0.

12.9 LAGRANGE MULTIPLIER AND CINSTRAINED OPTIMIZATIOM

Theorem. (Lagrange Multiplier) Suppose that f(z,y),g(x,y) are continuously differ-
entiable functions. If the maximum (minimum) value of f subject to tne constraint
g(z,y) = 0 cccurs at a point P where Vg(P) # 0, then

Vf(P) = AVg(P)

for some \.

Example.

:\/1U2+y2,33'y—1:0,
(2)f24xy7a2+ 2_1
(3) f = 8zyz, 2+b2+ =1.

Theorem. (Lagrange Multiplier with Two Constraints) Suppose that f(x,y, z), g(x,y, z), h(x,y, 2)
are continuously differentiable functions. If the maximum (minimum) value of f subject
to tne constraint g(x,y,z) = 0, h(x,y,z) = 0 cccurs at a point P where Vg(P) and Vh(P)
are independent, then
Vf(P) = AVg(P)+ pVh(P)
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for some A, pu.

Example.

(1) e4y+z=12,z2=a+12 f =2,

2) z4+y+z=La*+y*+22=1and f =2 +y° + 2%
(3) Ttttn > (g g,V for 2; > 0,i =1, n,
(4)

flay,2) =22+ 2+ 2,\/2? +12 <2 < A —a? — 2.

12.10 CRrITICAL POINT OF FUNCTION OF TWO VARIABLES

Taylor Polynomial of Function of Two variables.

m n 6”
Palean) = 100+ Y 515 (1) gragace, (0.0 5
n=1 " 0

Theorem. Suppose that f,, and f,, are continuous, then fyy,(a,b) = fyz(a,b).

Critical Point of Function of Two Variables. Suppose that (0,0) is a critical point
of f,let A= f,2(0,0), B = f,(0,0),C = £,,(0,0) and A = AC — B2. Then the Taylor
polynomial of f at (0,0) of order two is

1 B A

so we have the following conclusions

(1) If A >0,A > 0 then f(0,0) is local minimum.
(2) If A > 0,4 <0 then f(0,0) is local maximum.
(3) If A < 0 then f(0,0) is neither local maximum nor local minimum.

Example.
(1) 3z — 2% — 3xy?,
(2) 6xy? — 223 — 3yt



