CHAPTER 11, VECTORS, CURVES AND SURFACES IN SPACE R3

11.2 THREE DIMENSIONAL RECTANGULAR COORDINATES AND VECTORS

Rectangular Coordinates. P(x,y, 2)

Distance in R3.

|PLPs| = /(21 — 22)2 + (1 — 92)2 + (21 — 22)2

a = (a1, a2,a3), length |a| = \/a} + a3 + a3.
i=(1,0,0),j=(0,1,0),k = (0,0,1).
Dot Product of two Vectors.

Vectors in R3.

a-b=ab; + axbs + asbs.

Example. (3,4,12) - (—4,3,0)
Properties of Dot Product.

(1) a-a=|af?,

(2) a-b=Db-a,

(3) a-(b+c)=a-b+a-c,

(4) (Aa)-b=Aa-b)=a-(\b).

a-b
la|[b]

Theorem. a-b = |a||b|cosf, or cos = . Where 0 is the angle between a,b.

Example.
(1) (8,5)-(=11,17),
(2) (8,5,—1)-(—11,17,3).

Directional Angles, directional Cosine of a.

(1) a = Zai, cosa

(2) B=Zaj, cosp
(3) v = Zak, cosy.

_ a1 _ az — a3
Hence cosa = BE cos 3 COSY = 17

Example. (2,3,—1).

DEFINITION.Let a,b be two nontrivial vectors.

1) aj = 2Bb, which is the component of a in the direction of b.
I = T
2) a; = a— a; which is the component of a perpendicular to b.
l
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Example. (4,5,3),(2,1,—-2).

Remark. Let a,b be any pair of othogonal vectors in R?, then any vector x in R? can be

written as
X-a x-b
X=-—za+

|a

b7 .

11.3 Cross PrRoDUCT OF VECTORS

DEFINITION.
a x b = (azb3 — azbz, azby — a1b3, a1by — asby)
also
az a as a ar a 1J ok
_ |2 3 3 1| 1 20 _
axb= by bs 1+ by by J+ by b k=la1 a a3
b1 by b3
Example.

(1) ixj=k,jxk=1ik xi=}j,
(2) (37_172) X (2727_1)‘

Theorem. |a x b| = |a||b]|siné.

Example. AABC, A(3,0,—1),B(4,2,5),C(7,—2,4)

Properties of cross product.

(1) axb=-bxa.
) (Aa) x b= A(a xb)=a x (Ab).
Jax(b+c)=axb+axec.
)a-(bxc)=(axb)-c.
)ax(bxc)=(a-c)b—(a-b)c.

Proof of(5). (I) Assume b L c. Since a x (b x ¢) L (b X c¢), it is in the plane generated
by b and c. In order to apply (*) , let’s compute

(ax (bxc))-b=a-((bxc)xb)=(a-c)bl.

And similarly
(ax(bxc))-c=a-((bxc)xc)=—(a-b)c.

Now by (*) we prove (5) in this case.
(IT) In general

ax(bxc)=ax(bx(cL+c))=ax(bxcy).
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Apply (I) we get
ax(bxc)=(a-c )b—(a-b)c,.

But the right hand side is equal to (a-c)b — (a-b)c.

al as as
DEFINITION. Scalar triple product a- (b xc)=|b; by b3
C1 Co C3

Example.

(1) (i—2j+3Kk) x (3i +2j — 4k),
(2) a=2i—3k,b=i+j+k,c=4j—k.

Theorem. a- (b X c) is the volume of the parallelpiped generated by a, b, c .

Example.

(1) 0(0,0,0),P(3,2,—1)
(2) A(1,-1,2),B(2,0,1),

11.4 LINES AND PLANES IN SPACE R3

Line in Parametric Equation. Given a point P(zo, 30, 20) and a direction u = (a, b, ¢),
the line pass P along the direction u is represented by x = xo +at,y = yo + bt, z = 29 +ct

Example.
(1) P1(17272)7P2(37 _173)7
(2) c=14+2t,y=2—-3t,z=2+t.

Line in Symmetric Equation.

T — X0 Y —Yo Z— 20 .
= = , orifc=0,z= 2.
a b c

Example. P;(3,1,—-2), P»(4,—1,1).

Plan. Given a point rg = (zo, Yo, 20) and a direction n = (a, b, ¢), the plane pass ry and
normal to n is represented by

n-(r—rg)=0.0rax+ by + cz = axo + byo + ¢z

Example.
(1) ro =(—-1,5,2),n = (1,-3,2),
(2) P(27 47 _3)7 Q(Ba 77 _1)7 R 47 70)
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Parallel Planes, Angle between two nonparallel planes. Two planes are parallel if

n; = Any. The angle between two non parallel planes is cos§ = |r?1 %i|nr122|.
Example. 22+ 3y — 2 =3,4x + 5y + 2z = 1.
The intersection line of two nonparallel planes.
rog+ tn; X no.
z—3 _ y—1 _ z42 _
Example. 7° = = = 23 —1.

Distance from a point to a line. For given point P and line () + tu, the distance is

given by
i]i|
ul

|ul
Distance from a point to a Plane. For given point P and plane u- (r — rg) = 0, the
distance is given by

PQ - [PQ -

n-(r—rop)

d=| |

0|
or

ar + by + cz — axg — byo — czo|

Distance between two nonparallel nonintersecting lines. Let P + tu and @Q + sv
be two nonparallel lines, then the distance between them can be represented by

d=

—_—= uxv

PQ -

lu x v|

11.5 CURVES AND MOTIONS IN SPACE

Example.

(1) =(

(24 cos 3t) cost,y(t) = (2 + cos 3t)sint, z(t) = sin 3¢,

) =
(2) x(t) = 4cost,y(t) = 4sint, z(t) = 0,
(3) z(t) = 5cost ,y(t) =0, 2(t) = 3sint,
(4) z(t) = 0,y(t) = 3cost, z(t) = 5sint.

Vector Valued Function.

Example. r(t) = (cost,sint,t)
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Limits, Continuity , Differentiation and Integration of Vector Valued Func-
tion. The Limits, Continuity , Differentiation and Integration of Vector Valued Functions
are consider componentwisely.

Example. The tangent of (cost,sint,t).

Theorem.

Example. If |r(t)] = ¢ then r(¢) - r'(t) = 0 and if u(¢) - v(t) = 0, then u'(¢) - v(t) =
—u(t) - v'(t).

Velocity vector and Acceleration vector.

(1) v(t) =r'(t) is the velocity vector,
(2) a(t) = v'(t) is the accelration vector,
(3) |v(t)| is the speed function and |a(t )| is the scalar acceleration function.

Example.
(1) x(t) =t + 1%,
(2) r(t) = acoswti+ asinwt + btk is the solution to F = ma,F = (¢v) x B, B = bk.
(3) a(t) =2i+ 6tj,r(0) =2i,v(0) =i—j,
(4) a(t) = —32j,r(0) = 1600, v(0) = 220,r(?) = 0,
(5) a(t) = 2i — 32k, r(0) = (0,0,0),v(0) = 80j + 80k, 2(?) = 0.

11.6 CURVATURE AND ACCELERATION

Arc Length. s—f [v(t)|dt.

Example. r(t) = (acoswt, asinwt, bt)

Paramatrized by arclength.

Example. As above.

Curvature of Plane Curve. Let T = (cos¢,sin¢) be the unit tangent vector. Then

‘fl—rf = (—sin ¢i 4 cos ¢J) =, and let k = |%| = |%|, is the curvature of the curve, and it

can be represented by
.0 // /|

= |y .
NEEavoat

In the case of graph (z, f(x)),
//|

_ ly
(14 (y)?)%2
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Example. (acost,asint),k = + Write

dT
2 _ kN
ds &

N is called the principal normal. % = —rT.
Theorem. Suppose that x =0, then r(s) = r(0) + sT.
Proof. Since = 0, T(s) is a constant vector T. Hence r(s) = r(0) + [, Tds = r(0) + sT.

Theorem. Let r and ribe two curves paramatrized by arclength, suppose that Kk = k1
then r and r; are congruent.

Proof. Since [T — T[>+ [N —N;|?] =0, |T — T1|? + [N — Ny |? is a constant. After
translation, rotation and reflection(if necessary), we may assume that r(0) = (0,0) =
r1(0),T(0) =i = T4(0),N(0) = j = Ny(0). Hence | T — Ty =0 = [N —-N;y|. So
r(s) = fos Tds = fos T1ds =r1(s).

Osculation circle (Circle of Curvature), Radius of Curvature, Center of Cur-
vature. p = % is the radius of curvature and v = r 4 pN is the center of curvature.

Example. y = 22

Curvature of Space Curves. Let T be the unit tangent of a space curve , then ‘fl—rf = kNN
define the curvature x and the pricipal normal N and then B = T x N is the binormal.

And also d%B = —7N, 7 is the torsion .

Example. (acoswt,asinwt, bt).
Theorem. If 7 =0, then r(s) is a plane curve.

Proof. Since 7 = 0 implies that %B = 0, that means B is a constant vector. After rotation
we may assume B = k, then T(s) = cosf(s)i + sinf(s)j. Then r(s) =r(0) + fos T(s)ds is
a plane curve.

Theorem.

dN
— =—xT+7B.
ds

Theorem. Let r(s) and ri(s) be two curve paramatrized by arclength ,if k = k1,7 = 71,
then r(s) and r1(s) are congruent.

Tangent and Normal Component of Acceleration.

d dv
a=—T)=—T+ kv®N = arT + ayN
TR T N
where ar = %,a]\/ = kv? are the tangent and normal components respectively of the

acceleration.

Example. r(t) = (3%, 5t3)
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Computation in terms of v, a.
(1) v.-a= (vT) - (arT + axyN) = ap,ar = X2

v )

X X
(2) vxa=wvayB =rv’B,k = %,GN = |vva|,
(3) N — a—arT
an :

Example. r(t) = (t, 5%, %t3).
Kepler vs Newton.

Kepler’s Law.

(1) The orbit of each planlet is an ellpise with the sun at one focus.

(2) The radius vector from the sun to a planlet sweeps out area at constant rate.

(3) The square of the period of revolution of planlet about the sun is proportional to
cube of ther major semiaxis of the elliptic orbit.

In short

Kepler’s Law.

pe
1+rcosf"

(1) The orbit can be represented by r =

(2) r2(t)0'(t) is a constant h = r(0)v(0)

(3) Z—; is constant

Definition. A force field is called center force field if F || r.
Theorem. The motion under a center force field is a planar motion.
Proof. Sinc F || r, then a || r.

d(r x v)

=vXxv+4+rxa=0,
dt

so r X v is a constant vector, after a rotation we may assume that r x v = ck. Sor(¢) L k,
hence we have r(t) = ¢(t)i + ¥ (t)j.

Definition. u, = cosfi + sinfj is the radial unit vector and ug = — sin6i + cosfj is the
transverse unit vector. It is clear

d(;: = 6'uy, % = —6'u,. (0)
Now for planar motion
r=ru,,
v =7r"u, +r0'uy, (1)
a=(r" —r@)u, + (20 +ro")u,. (2)

The force is center force if and only if

(2r'0" +r0'")=0. (3)
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But that means
1 dr20’
hl -0
r o dt

and hence
20’ = h (4)

is a constant, that is the Kepler’s 2nd law,
Kepler implies Newton.

Proof. From Kepler’s 2nd law r26’ = h is a constant, we get that

a= (" —r(¢)")u,. (4)
And from Kepler’s 1st law
P L — (6)
1+ecosf
Then 00
o — _Ppeesin 7

(1+ ecos)?’

y pe2(esinfd’)®  peecosf(0)? peesin 60"
~ (14ecos)3 = (1+ecosh)?  (1+ecosh)?’

By (3) the first and third terms on the right hand side of (8) cancel out each other, that
gives
,  peecosf(6)?
P =

~ (1+4ecosf)?’ )

By (3),(4),(5),(6),and (9) we get

/\2 2
I 2o N 10
(1+ ecosh)? 72
with = Z—z we complete the proof of Newton’s gravitation law
n
a=— U (10)

Newton implies Kepler.
Proof. From Newton’s law (10) we have from (2),(3) and (4) 72’ = h and

dv W p dug g dug

at T TR T 2 e T hat

Hence

V:%UQ+C.
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Now assume that 7(0) is the minimum of r(¢) ,hence 7'(0) = 0 and r(0) = (0)i and then
by (1) v(0) = v(0)j = r(0)8'(0)j, hence h = (r(0))26(0) = r(0)v(0). Let t = 0 we have

So

V= %119 + (v(0) — %)J

Take the dot product with uy we get

rg = % + (v(0) — %) cos 0,
hence L
n_HK _H
=T (v(0) h)cos@.
That gives
h?/ pe

"= 1+ (v(0)h/p —1)cosé " 1+ecosf

with pe = i and e = 2@h 1 _ r(0)(v(0))* 1.
12 1% 7 pe

To prove (3) of Kepler, since Th = wab and a = £55.b = Nt

1—e2?

4
2,2 2 (pe) _ .23
Th =7 m =T a pe
SO Z—; =2k
11.7 CYLINDERS AND (QUADRATIC SURFACES
Cylinder.
Example.

(1) 2% +y* = a?,
(2) z =sint,y = sin 2t,
(3) 4y% +922 =36,
(4) z=4— 22
Surface of revolution.

Example.4y? + 22 = 4, revolution

(1) about y-axis is 422 + 4y* + 22 = 4,

(2) about z-axis is 2% + 4y* + 22 = 4.
For a curve given by f(z,y) = 0 the surface of revolution about z-axis is f(vz? + 22,y) =
0.
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Quadratic Surface.

Example.

(1) 22 = 2% + y? is a quadratic cone.

(2) 2_2 + z—i + 'z—z =1 is an ellpisoid.

(3) 2—2 + 2—2 = % is elliptic parabaloid.

(4) 2_2 + z—i = i—i is an ellptic cone.

(5) 2—2 + Z_i — i—i =1 is a hyperboloid of one sheet.
(6) 2—2 — z—i — i—Q = lis a hyperboloid of two sheets.
(7) 2—2 — Z_i = % is a hyperbolic paraboloid.

11.8 CYLINDRICAL AND SPHERICAL COORDINATES
Cylindrical Coordinates.
r=rcosf,y =rsinf, z =z

r? = 2% +y?, tanf = g,z:z
x

Example.
(1) (475%’ )7
(2) (_27275)7
(3) 2% +y* + 22 = a?,
(4) 2% =2 +¢?,
(5) = =a%+ 2,
6) (5)°+(5)*+(3)° =1

Spherical Coordinates.

x = psin¢cosf,y = psin¢psinb, z = pcos ¢

Example.
(1) (8,3 %),
2) (—3,—4,-12),

= 2cos ¢,
= sin ¢ sin6.

(2)

(3) z =2 +17,
(4) p

(5) p



