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11.2 Three Dimensional Rectangular Coordinates and Vectors

Rectangular Coordinates. P (x, y, z)

Distance in R
3.

|P1P2| =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

Vectors in R
3.

a = (a1, a2, a3), length |a| =
√
a2
1 + a2

2 + a2
3.

i = (1, 0, 0), j = (0, 1, 0),k = (0, 0, 1).

Dot Product of two Vectors.

a · b = a1b1 + a2b2 + a3b3.

Example. (3, 4, 12) · (−4, 3, 0)

Properties of Dot Product.
(1) a · a = |a|2,
(2) a · b = b · a,
(3) a · (b + c) = a · b + a · c,
(4) (λa) · b = λ(a · b) = a · (λb).

Theorem. a · b = |a||b| cos θ, or cos θ = a·b
|a||b| . Where θ is the angle between a,b.

Example.
(1) (8, 5) · (−11, 17),
(2) (8, 5,−1) · (−11, 17, 3).

Directional Angles, directional Cosine of a.
(1) α = ∠ai, cosα
(2) β = ∠aj, cosβ
(3) γ = ∠ak, cos γ.

Hence cosα = a1
|a| , cosβ = a2

|a| , cos γ = a3
|a| .

Example. (2, 3,−1).

DEFINITION.Let a,b be two nontrivial vectors.
(1) a‖ = a·b

|b|2 b, which is the component of a in the direction of b.
(2) a⊥ = a − a‖ which is the component of a perpendicular to b.
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Example. (4, 5, 3), (2, 1,−2).

Remark. Let a,b be any pair of othogonal vectors in R
2, then any vector x in R

2 can be
written as

x =
x · a
|a|2 a +

x · b
|b|2 b. (*)

11.3 Cross Product of Vectors

DEFINITION.

a × b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1)

also

a × b =
∣∣∣∣
a2 a3

b2 b3

∣∣∣∣ i +
∣∣∣∣
a3 a1

b3 b1

∣∣∣∣ j +
∣∣∣∣
a1 a2

b1 b2

∣∣∣∣k =

∣∣∣∣∣∣
i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣

Example.

(1) i × j = k, j × k = i,k × i = j,
(2) (3,−1, 2) × (2, 2,−1).

Theorem. |a× b| = |a||b| sin θ.

Example. �ABC,A(3, 0,−1), B(4, 2, 5), C(7,−2, 4)

Properties of cross product.

(1) a × b = −b × a.
(2) (λa) × b = λ(a × b) = a × (λb).
(3) a × (b + c) = a × b + a × c.
(4) a · (b × c) = (a × b) · c.
(5) a × (b × c) = (a · c)b − (a · b)c.

Proof of(5). (I) Assume b ⊥ c. Since a × (b × c) ⊥ (b × c), it is in the plane generated
by b and c. In order to apply (*) , let’s compute

(a × (b × c)) · b = a · ((b × c) × b) = (a · c)|b|2.

And similarly
(a × (b × c)) · c = a · ((b × c) × c) = −(a · b)|c|2.

Now by (*) we prove (5) in this case.
(II) In general

a × (b × c) = a × (b × (c⊥ + c‖) = a × (b × c⊥).
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Apply (I) we get
a × (b × c) = (a · c⊥)b − (a · b)c⊥.

But the right hand side is equal to (a · c)b − (a · b)c.

DEFINITION. Scalar triple product a · (b × c) =

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
Example.

(1) (i − 2j + 3k) × (3i + 2j − 4k),
(2) a = 2i − 3k,b = i + j + k, c = 4j − k.

Theorem. a · (b × c) is the volume of the parallelpiped generated by a,b, c .

Example.

(1) O(0, 0, 0), P (3, 2,−1), Q(−2, 5, 1), R(2, 1, 5) ,
(2) A(1,−1, 2), B(2, 0, 1), C(3, 2, 0),D(5, 4,−2) coplanar.

11.4 Lines and Planes in Space R
3

Line in Parametric Equation. Given a point P (x0, y0, z0) and a direction u = (a, b, c),
the line pass P along the direction u is represented by x = x0 + at, y = y0 + bt, z = z0 + ct

Example.

(1) P1(1, 2, 2), P2(3,−1, 3),
(2) x = 1 + 2t, y = 2 − 3t, z = 2 + t.

Line in Symmetric Equation.

x− x0

a
=
y − y0
b

=
z − z0
c

, or if c = 0, z = z0.

Example. P1(3, 1,−2), P2(4,−1, 1).

Plan. Given a point r0 = (x0, y0, z0) and a direction n = (a, b, c), the plane pass r0 and
normal to n is represented by

n · (r − r0) = 0. or ax+ by + cz = ax0 + by0 + cz0

Example.

(1) r0 = (−1, 5, 2),n = (1,−3, 2),
(2) P (2, 4,−3), Q(3, 7,−1), R(4, 3, 0).
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Parallel Planes, Angle between two nonparallel planes. Two planes are parallel if
n1 = λn2. The angle between two non parallel planes is cos θ = n1·n2

|n1‘||n2| .

Example. 2x+ 3y − z = 3, 4x+ 5y + z = 1.

The intersection line of two nonparallel planes.

r0 + tn1 × n2.

Example. x−3
1 = y−1

−2 = z+2
3 or 2x+ y = 7, 3x− z = 11, 3y + 2z = −1.

Distance from a point to a line. For given point P and line Q + tu, the distance is
given by

|−→PQ− [
−→
PQ · u

|u| ]
u
|u| |.

Distance from a point to a Plane. For given point P and plane u · (r − r0) = 0, the
distance is given by

d = |n · (r − r0)
|n| |

or

d =
ax+ by + cz − ax0 − by0 − cz0|√

a2 + b2 + c2
.

Distance between two nonparallel nonintersecting lines. Let P + tu and Q + sv
be two nonparallel lines, then the distance between them can be represented by

|−→PQ · u × v
|u× v| |.

11.5 Curves and Motions in Space

x = f(t), y = g(t), z = h(t).

Example.

(1) x(t) = (2 + cos 3
2 t) cos t, y(t) = (2 + cos 3

2 t) sin t, z(t) = sin 3
2 t,

(2) x(t) = 4 cos t, y(t) = 4 sin t, z(t) = 0,
(3) x(t) = 5 cos t, y(t) = 0, z(t) = 3 sin t,
(4) x(t) = 0, y(t) = 3 cos t, z(t) = 5 sin t.

Vector Valued Function.
r(t) = (x(t), y(t), z(t)).

Example. r(t) = (cos t, sin t, t)
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Limits, Continuity , Differentiation and Integration of Vector Valued Func-
tion. The Limits, Continuity , Differentiation and Integration of Vector Valued Functions
are consider componentwisely.

Example. The tangent of (cos t, sin t, t).

Theorem.
(1) [u + v]′(t) = u′(t) + v′(t),
(2) [cu]′(t) = cu′(t),
(3) [fu]′(t) = f ′(t)u(t) + f(t)u′(t),
(4) [u · v]′(t) = u′(t) · v(t) + u(t) · v′(t),
(5) [u × v]′(t) = u′(t) × v(t) + u(t) × v′(t).

Example. If |r(t)| = c then r(t) · r′(t) = 0 and if u(t) · v(t) = 0, then u′(t) · v(t) =
−u(t) · v′(t).

Velocity vector and Acceleration vector.
(1) v(t) = r′(t) is the velocity vector,
(2) a(t) = v′(t) is the accelration vector,
(3) |v(t)| is the speed function and |a(t)| is the scalar acceleration function.

Example.
(1) r(t) = ti + t2j,
(2) r(t) = a cos ωti + a sinωt+ btk is the solution to F = ma,F = (qv) × B, B = bk.
(3) a(t) = 2i + 6tj, r(0) = 2i,v(0) = i − j,
(4) a(t) = −32j, r(0) = 1600,v(0) = 220, r(?) = 0,
(5) a(t) = 2i − 32k, r(0) = (0, 0, 0),v(0) = 80j + 80k, z(?) = 0.

,

11.6 Curvature and Acceleration

Arc Length. s =
∫ b

a
|v(t)|dt.

Example. r(t) = (a cos ωt, a sinωt, bt)

Paramatrized by arclength.

Example. As above.

Curvature of Plane Curve. Let T = (cosφ, sinφ) be the unit tangent vector. Then
dT
ds

= (− sinφi + cosφj)dφ
ds

, and let κ = |dT
ds

| = |dφ
ds
|, is the curvature of the curve, and it

can be represented by

κ =
|y′′x′ − x′′y′|

(
√

(x′)2 + (y′)2)3
.

In the case of graph (x, f(x)),

κ =
|y′′|

(1 + (y′)2)32
.
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Example. (a cos t, a sin t), κ = 1
a Write

dT
ds

= κN

N is called the principal normal. dN
ds = −κT.

Theorem. Suppose that κ ≡ 0, then r(s) = r(0) + sT .

Proof. Since κ ≡ 0, T(s) is a constant vector T. Hence r(s) = r(0) +
∫ s

0 Tds = r(0) + sT.

Theorem. Let r and r1be two curves paramatrized by arclength, suppose that κ ≡ κ1

then r and r1 are congruent.

Proof. Since d
ds [|T − T1|2 + |N − N1|2] = 0, |T − T1|2 + |N − N1|2 is a constant. After

translation, rotation and reflection(if necessary), we may assume that r(0) = (0, 0) =
r1(0),T(0) = i = T1(0),N(0) = j = N1(0). Hence |T − T1| ≡ 0 ≡ |N − N1|. So
r(s) =

∫ s

0
Tds =

∫ s

0
T1ds = r1(s).

Osculation circle (Circle of Curvature), Radius of Curvature, Center of Cur-
vature. ρ = 1

κ is the radius of curvature and γ = r + ρN is the center of curvature.

Example. y = x2

Curvature of Space Curves. Let T be the unit tangent of a space curve , then dT
ds = κN

define the curvature κ and the pricipal normal N and then B = T × N is the binormal.
And also d

dsB = −τN, τ is the torsion .

Example. (a cos ωt, a sinωt, bt).

Theorem. If τ ≡ 0, then r(s) is a plane curve.

Proof. Since τ ≡ 0 implies that d
dsB ≡ 0, that means B is a constant vector. After rotation

we may assume B = k, then T(s) = cos θ(s)i + sin θ(s)j. Then r(s) = r(0) +
∫ s

0
T(s)ds is

a plane curve.

Theorem.
dN
ds

= −κT + τB.

Theorem. Let r(s) and r1(s) be two curve paramatrized by arclength ,if κ ≡ κ1, τ ≡ τ1,
then r(s) and r1(s) are congruent.

Tangent and Normal Component of Acceleration.

a =
d

dt
(vT) =

dv

dt
T + κv2N = aT T + aNN

where aT = dv
dt , aN = κv2 are the tangent and normal components respectively of the

acceleration.

Example. r(t) = (3
2 t

2, 4
3 t

3)
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Computation in terms of v,a.
(1) v · a = (vT) · (aT T + aNN) = aT , aT = v·a

v
,

(2) v × a = vaNB = κv2B, κ = |v×a|
v3 , aN = |v×a|

v ,

(3) N = a−aT T
aN

.

Example. r(t) = (t, 1
2 t

2, 1
3 t

3).

Kepler vs Newton.

Kepler’s Law.
(1) The orbit of each planlet is an ellpise with the sun at one focus.
(2) The radius vector from the sun to a planlet sweeps out area at constant rate.
(3) The square of the period of revolution of planlet about the sun is proportional to

cube of ther major semiaxis of the elliptic orbit.

In short

Kepler’s Law.
(1) The orbit can be represented by r = pe

1+r cos θ .

(2) r2(t)θ′(t) is a constant h = r(0)v(0)
(3) T 2

a3 is constant

Definition. A force field is called center force field if F ‖ r.

Theorem. The motion under a center force field is a planar motion.

Proof. Sinc F ‖ r, then a ‖ r.

d(r × v)
dt

= v × v + r× a = 0,

so r×v is a constant vector, after a rotation we may assume that r×v = ck. So r(t) ⊥ k,
hence we have r(t) = φ(t)i + ψ(t)j.

Definition. ur = cos θi + sin θj is the radial unit vector and uθ = − sin θi + cos θj is the
transverse unit vector. It is clear

dur

dt
= θ′uθ,

duθ

dt
= −θ′ur. (0)

Now for planar motion
r = rur ,

v = r′ur + rθ′uθ, (1)

a = (r′′ − r(θ′)2)ur + (2r′θ′ + rθ′′)uθ. (2)

The force is center force if and only if

(2r′θ′ + rθ′′)=0. (3)
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But that means
1
r

dr2θ′

dt
= 0

and hence
r2θ′ = h (4)

is a constant, that is the Kepler’s 2nd law,

Kepler implies Newton.

Proof. From Kepler’s 2nd law r2θ′ = h is a constant, we get that

a = (r′′ − r(θ′)2)ur. (4)

And from Kepler’s 1st law
r =

pe

1 + e cos θ
. (6)

Then

r′ =
pee sin θθ′

(1 + e cos θ)2
, (7)

r′′ =
pe2(e sin θθ′)3

(1 + e cos θ)3
+
pee cos θ(θ′)2

(1 + e cos θ)2
+

pee sin θθ′′

(1 + e cos θ)2
. (8)

By (3) the first and third terms on the right hand side of (8) cancel out each other, that
gives

r′′ =
pee cos θ(θ′)2

(1 + e cos θ)2
. (9)

By (3),(4),(5),(6),and (9) we get

a = − pe(θ′)2

(1 + e cos θ)2
ur = −h

2/(pe)
r2

ur

with μ = h2

pe we complete the proof of Newton’s gravitation law

a = − μ

r2
ur. (10)

Newton implies Kepler.

Proof. From Newton’s law (10) we have from (2),(3) and (4) r2θ′ = h and

dv
dt

= a = − μ

r2
ur =

μ

r2θ′
duθ

dt
=
μ

h

duθ

dt
.

Hence
v =

μ

h
uθ + C.
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Now assume that r(0) is the minimum of r(t) ,hence r′(0) = 0 and r(0) = r(0)i and then
by (1) v(0) = v(0)j = r(0)θ′(0)j, hence h = (r(0))2θ(0) = r(0)v(0). Let t = 0 we have

C = (v(0) − μ

h
)j.

So
v =

μ

h
uθ + (v(0) − μ

h
)j.

Take the dot product with uθ we get

rθ′ =
μ

h
+ (v(0) − μ

h
) cos θ,

hence
h

r
=
μ

h
+ (v(0) − μ

h
) cos θ.

That gives

r =
h2/μ

1 + (v(0)h/μ − 1) cos θ
=

pe

1 + e cos θ

with pe = h2

μ and e = v(0)h
μ − 1 = r(0)(v(0))2

μ − 1.
To prove (3) of Kepler, since Th = πab and a = pe

1−e2 , b = pe√
1−e2 .

T 2h2 = π2 (pe)4

(1 − e2)3
= π2a3pe

so T 2

a3 = π2 pe
h2 .

11.7 Cylinders and Quadratic Surfaces

Cylinder.

Example.

(1) x2 + y2 = a2,
(2) x = sin t, y = sin 2t,
(3) 4y2 + 9z2 = 36 ,
(4) z = 4 − x2.

Surface of revolution.

Example.4y2 + z2 = 4, revolution
(1) about y-axis is 4x2 + 4y2 + z2 = 4,
(2) about z-axis is x2 + 4y2 + z2 = 4.

For a curve given by f(x, y) = 0 the surface of revolution about x-axis is f(
√
x2 + z2, y) =

0.
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Quadratic Surface.

Example.

(1) z2 = x2 + y2 is a quadratic cone.
(2) x2

a2 + y2

b2 + z2

c2 = 1 is an ellpisoid.
(3) x2

a2 + x2

a2 = z
c is elliptic parabaloid.

(4) x2

a2 + y2

b2 = z2

c2 is an ellptic cone.

(5) x2

a2 + y2

b2 − z2

c2 = 1 is a hyperboloid of one sheet.
(6) x2

a2 − y2

b2 − z2

c2 = 1is a hyperboloid of two sheets.

(7) x2

a2 − y2

b2 = z
c is a hyperbolic paraboloid.

11.8 Cylindrical and Spherical Coordinates

Cylindrical Coordinates.

x = r cos θ, y = r sin θ, z = z

r2 = x2 + y2, tan θ =
y

x
, z = z

Example.

(1) (4, 5π
3 , 7),

(2) (−2, 2, 5),
(3) x2 + y2 + z2 = a2,
(4) z2 = x2 + y2,
(5) z = x2 + y2,
(6) (x

3 )2 + (y
3 )2 + (z

2 )2 = 1.

Spherical Coordinates.

x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ

Example.
(1) (8, 5π

6 ,
π
3 ),

(2) (−3,−4,−12),
(3) z = x2 + y2,
(4) ρ = 2 cosφ,
(5) ρ = sinφ sin θ.


