CHAPTER 10, INFINITE SERIES

10.2 INFINITE SEQUENCE

Definition.
a1,a2,as,: -, {a’n};?LO:D {a’n}?o7 {a’n}'
an = f(n).
Example.
(1) {535, {10"}5°, {v/3n = T}5°, {sin &7}, {3 + (- 1)"}.
{2,3,5,7,11,13,17,23,--- },

(2)
(3) {37 1747 1757972767573757 T }7
(4) Fibonacii sequemce Fy = 1, Fy =1, F,,41 = F,, + F,—1,n > 2(recurrently definded)

(5) Ag =100, Ay, +1 = Ay, % (1.1)(recurrently definded).

Limit of Sequence.

Definition. A sequence {a,} converges to a limit L if for any € > 0 there is N(e) such
that n > N(e¢) implies that |a, — L| < €, in this case we write lim,,_,~ a,, = L. A sequence
diverges if it does not converge.

Example.( lim, .o =+ = 0. {(—1)"} diverges.
Limit Laws.

Theorem. Suppose that lim,,_. a, = A,lim,_, b, = B, then
(1) limy— oo can = cA
(2) limy,—oo(an +bn) =A+ B
(3) limy— oo anb, = AB
(4) limp—oo 92 = £ if B # 0.

Theorem. (Substitution law) Iflim,,_, a, = a andlim,,_,~ f(a,) = L, thenlim,,_,~ f(an) =
L.

Theorem. (Squeeze law) If a, < b, < ¢, and lim,_oca, = L = lim,_,o ¢, then
lim,, oo b, = L.

Example.

. 2
(1) hmn—»oo 523_3 = %7

(2) limp oo <37 =0,

(3) If a > 0, lim, . a

3=

=1

Y
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dn—1 __
n+1 ~ 2

5) If |r| <1 then lim, 7™ = 0.

(4)
(5)
(6) lim, o 22 =0,
(7)
(8)

lim,, 00 ,

. 1
7) lim,_oonn =1,

8 3n° _ (),

llmTL—>OO €2n

Definition. A sequence {a,,} is bounded sequence if there exists M such that |a,| < M
for all n.

Theorem. Convergent sequences are bounded sequence.
Definition. A sequence {a,} is monotonic sequence if a,, > (<)an41 for all n.
Bounded monotonic sequences.

Theorem. Bounded monotonic sequences are convergent sequences.

Example. a; = \/6, ant1 = /6 + an,n > 1 In general
Example.(Exploration 1 page 732) a1 = \/q,ant1 = /q + pan,n > 1
Example.Exer. 56 page 731.

Example.(Exploration 2 page 732) a1 = p,any1 =p+ %.

2
Example.a; =a > 0,a,4+1 = H%, converges if and only if 0 <a < 1.
Definition. A sequence {b,} is a subsequence of {a,} if b, = ay) forn =1,2,3--- and
A is an increasing function from N to N.
1 1 1
Example. a, = =,b, = 579Cn = 5 -

n’
Theorem. If {a,} converges to L, then every subsequence also converges to L

Definition. A sequence {a,} is a Cauchy sequence if for any ¢ > 0 there is N(€) such
that m > n > N(e) implies that |a, — am| < €.

Theorem. A sequence is a convergent sequence iff it is a Cauchy sequence.

Proof.

(1) Choose ¢,d such that ¢ < a,, <d for all n, and let L =d — c.

(2) Let ¢; = ¢,d; = d and choose N; such that for all m > n > N; we have |ap, —ay| <
L

Z.
(3) Let c2 = max(c,an, — £),d2 = min(d,an, + £), then ¢z < a, < ds for all n > Ny
and do — o < % Choose N; such that for all m > n > Ny we have |a,, — a,| < %.
(4) Assume we have done k step. Let ¢x11 = max(c,an,) — Z,d> = min(d, an, ) + 2,

then cgq1lea, < diyq forallm > Nii1 and diy1 —cpy1 < QkLﬁ Choose N2 such

that for all m > n > Niio we have |a,, — a,| < Q,CLT
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(5) Now we have ¢1 < ¢ < cdotsey, < -+ <d, <---<dy
the l.u.b. C' and {d,} converges to the g.l.b.D and D
C > ¢y foralln,so D =C.

So {¢,} converges to

< d;.
> (C'. But since d,, > D >

(6) Let £L =D = C, then for n > Nj we have |a,, — L| < 2%

O

Remark. In case of a recursiveely definded sequence an4+1 = f(ay), you can use the
solution x = f(x) to determine the limit only after you show that the sequence converges.

10.3 INFINITE SERIES AND CONVERGENCE

Infinite series and their partial sum.

oo
Infinite series E an
1

m
partial sum up to m-th terms S,, = Z an
1

Remark. Every sequence can be written as the squence of partial sums of some series.

Definition. A series > " a, converges (or is convergent) to a sum S, provided that the
Iimit S = lim,,,— o0 S, exists. Otherwise the series ZTO an diverges.

Example.
(1) X" =1,
(2) D277 (=1)™ diverges,
3) X g = L

Definition. Geometry series ag = a,ap4+1 = ray,.

oo 2

Example. 1 3w

Theorem. A geometric series converges to % if |r| < 1. Diverges if |r| > 1.

Example.
(1) a=1,r= —%,
(2) 00 22n—1
1 ~—3n -

Theorem. IfY [“a, = A,> " b, = B, then

(1) >"(an +bn) = A+ B,
(2) Y% can = cA.

Example.

(1) 0.555-- -,
(2) 0.72828 -,

(3) Paul and Mary, r = (%)2, a1 =
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Remark. A real number is a rational number if and only if its decimal form is periodic.

Theorem. (n-th term test) If Y 7° a,, converges then lim,, o a, = 0.

Example. Y 7°(—1)""'n? 377° 225 both diverge
Theorem. Y (° 1 diverges

Theorem. Ifa, = b, for all n > N, then either both > {° a,, >.{ by, converge or both
diverge.

Theorem. > " a, converges if and only if for any e > 0 there is N(e) such that for all
N(e) < n <m, implies | " a;| < e.

10.4 TAYLOR POLYNOMIALS AND TAYLOR SERIES

Taylor polynomials.

(k)
Z f k'(a) (z — a)k
5 !
is the Taylor polynomial of f center at a up to m-th terms.

Example
(1) 155, a=035"a",
m DL (z—1)F
(2) nz,a=1, > %7
(3) e" a=0, 35 -

Theorem. (Taylor’s formulae) Suppose that f is (n + 1)-times differentiable on an open
interval I contains a, then for each x € I

" (g (n41)
=Y e et f(n T 1()1) (@ =

where z is between a and x.

Proof. Let F(t) = %, then F(z) — F(a) = _(fﬂ(;i);;rl and F'(z) = e nlz)n.

Let G(t) = f(x) — X2 L3z = 0¥, then G(x) - G(a) = f(z) — Tf L2 (@ — o),
and G'(z) = —w( —2)".

Apply the generalized M.V.T. to F,G we get [F(z) — F(a)|G'(2) = [G(z) — G(a)]F'(z)
to complete the proof.

Example. In1.1 = (0.1) — &% 4 D% (D% 1 1~ 0,095333.
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Definition. Taylor series of f center at a is

) (q
Z f . )k

Example.
(1) e =35 5,
()cosx— ?%,sinx: 80%,
@ =5
(4) sin2t =>° (—1)222;?11),;2“1

From (1),(2) we have the Euler formulae ¢ = cos + isin 6. The following example is to
find an approximation .

1 _ A \n+1
:1_x+x2_x3+...+(_1)nxn+¢
1+ 1+
1 (_t2)n—|—1
— 1_t2 t4_t6 Y _1 TLtQTL N -7
1+ ¢2 + + +(=1) + 1+1¢2
t3 t5 -1 nth—l—l t —t2 n+1
wte=1- e g SN TED g,
375 2n + 1 o 1+t
™ 11 (—1)n
—=1-== — ... Rn
4 3+5 +27’L—i—1+

10.5 INTEGRAL TEST

Theorem. Let > [~ a, be a series with a,, > 0 for all n. Then {S,,} Is an increasing
sequence, so it converges if and only if it is bounded.

Theorem. (Integral test) Suppose that f is a positive decreasing continuous function
n [1,00) and a, = f(n) for all n. Then the series Y, a, and the improper integral

floo f(z)dz are either both convergent or both divergent.

Proof. Since

m m m—+1
a1 +/ f(lz)dz > Zan > / f(x)dx,
1 T 1

so they are either both bounded or both unbounded.

Example.
m) £ L
(2) 1 np-
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Theorem. (Remainder estimate)

Example.%%1+2%+3%+---#With%+1

IN

Rn <

3=

10.6 COMPARISON TEST
Theorem. If> " a, and > | b, are two series with positive terms such that a,, < b, for
all n, then

(1) If Y .7° b, convegres then Y% a,, also converges.
(2) If Y 7" a,, divegres then Y 1° b, also diverges.

Theorem. If> " a, and > | by, are two series with positive terms such that a,, < b, for
alln > N for some N and Y {° b, convegres, then > |° a, also converges.

Example.

(1) 37 W
(2) Zl V2n—1"
(3) X% ar-

Limit comparison test.

Theorem. IfY " a, and " by, are two series with positive terms such that lim,, =
L for some 0 < L < oo. Then either both Y ;" a, and Y ] b, are both convergent or
ST an and Y277 by, are both divergent.

Proof. There exists N such that ,for all n > N, % <3 < % That means a, < %bn
and b,, < %an for n > N.

Remark. Suppose that ZTO an converges and b, < Ca, for all n > N, then ZTO b,
converges.

Example.

2
1) T
1

2) 37 5w
(3) S b Ry < L.

Rearrangement and Grouping.

Definition. Aseries ZTO b, is a rearrangement of a series ZTO an, if there is a one to one
onto function o : N — N such that b, = ay(y) for all n.
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Theorem. If Y " a, is a convergent series with positive terms, then any rearrangement
of it will converge to the same limit.

Proof. Suppose that b, = a,(,) be a rearrangement of Y% ay,. Let A(n) = max{{o(j), it
is clear that B,, < A,\(n) for all n. Hence B,, < ZTO an for all n, which implies

o0 oo
b n
1 1
Conversely ZTO an is also a rearrangement of ZTO b,,. We also have
oo oo
DD S
1 1

Theorem. IfY (" a, os a convergent series, then any grouping of terms will also converge
to the same limit.

Example. Y °(—1)".

10.7 ALTERNTING SERIES AND ABSOLUTE CONVERGENCE
Definition. Suppose that a, > 0,then Y {°(—=1)""'a,, is an alternting series .

Theorem. (Alternating series theorem) Suppose that (1) a, > an41 for all n and (2)
limy, o0 ay, = 0, then Y77 (—1)""'a, converges.

) Since Saok41 = S2x—1 — (a2k — agk+1),then {Sak11} is decreasing.

) Since Sagta = Soi + (a2r+1 — a2k+2), then {Sor} is increasing.

) Since Sak41 = Sok + agk+1, then Sopyo > Sog.

) For I < k, Soi+1 > Sak+1 > Sok and for [ > k, Soj41 > S > Sop.

) Every Sai is a lower bound of {S2,+12}, so{San+1} converges to S, which is the

glb of {Sgn+1}.

(6) Every Sor+1 is an upper bound of {S2,}, so {S2,} converges to S., mwhich is the
Lu.b of {S2,}.

(7) So > Say, for all n and S, < Sap41 for all n and S, > S..

(8) From 0 < S, — Se < Sopya — Sor = agk+1, let k — oo we get S, = Se.

Example.

oo (—1)"t1!
(1) Y Sk,

oo (—=1)"t1n
(2) 1 %
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Theorem. (Remainder estimate)

|Rn| S Ap+1-

(=)~
n!

Example. e ' &~ 1— 5 4 3+

2! |Rn| < (n_|1_1)[-

Definition. If ) " |a,| converges, we say Y | a, converges absolutely. If > ° a, con-
verges but > {° |ay| diverges, we say ., an converges conditionally.

Theorem. If Y [° |a,| converges, then Y [° a, converges .

Proof. Let af = W%,a; = MT_G”, (a} = max(an,0), (a;, = min(—ay,0)).
Then |a,| =a} +a,,a, = af —a, and 0 < af,a, < |ay|.

If ZTO |ay,| converges, then both Z‘;" af and ZTO a=

- converge. Which implies that
7 a, converges.

Remark. If Y ° a, converges conditionally, then both Y 1 a} and > |" a, diverge.

Example.
(1) T4 =
(2 Yo (3" =1,

(3) (;O cc;LsQn.

3
4

Theorem. IfY " a, converges conditionally, then for any given real number L, there is
a rearrangement y ;- b, of Y {° a,, such that > " b, = L.

Ratio Test.

An 41
An

Theorem. Iflim,_ | | = p, then

(1) p <1 implies 1" |a,| converges,
(2) p> 1 implies Y " |a,| diverges,
(3) p =1 no conclusion.

Theorem. If || < p < 1,for alln > N for some N, then Y {° |a,| converges.
An

Example.
(1) X7 S
2 Sr
(3) X1 2=

Root Test.

Theorem. Iflim, . |an|® = p, then
(1) p<1 1:mp11:es Zi: lan| converges,
(2) p> 1implies ) | |ay| diverges,
(3) p =1 no conclusion.

Theorem. If |a,|* < p < 1,for all n > N for some N, then 31 lan| converges.

0 1
Example. 21 ont (=17 -
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10.8 POWER SERIES

oo
g anx”.
0

Domain of convergence. The set {z: ) o a,z™ converges}.

Theorem. Suppose that 280 anx{ converges for some xy # 0, then ZSO anx™ converges
absolutely for all {z : |z| < |zo|}.

Proof. Since Y ;" anzf converges, apxf — 0 as n — oo. In particalar there exist N such

that for n > N, |anx8| < 1. Now for fix x with |x| < |zo|, |an,z™| = |anx8|(%)”. So

SN lanz™ < 3°F ( BT |)”, which converges due to |z| < |zg|. The proof is complete.

Remark.The domain of convergence must be one of the following

(1) {0}, ZSO nlz™,
2) R, o

(2)

() (R B
(4) [ )ZO R”nn
(5) (~R,R], 0 G
(6) (—R,R),> o7 a™

R is called the radius of convergence.

lant1] _

o = p or limy, o lan|* = p, then R =

Theorem. Fither lim,,

Example.
1) Z5
(2) TO ((qu))l 9
(3) 5wt
(4) X5 %

Power series center at c.
oo
E an(x —c)"
0

Example. >0° D (@=3)"

n4mn

Power series representation of function center at «

£k (4
f@) =3 T o

0
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Taylor series if a = 0 is called Maclaurin series.

Example.

(1) e~ coshz,sinhz, e,
(2) Bessel function Jy(x) =Y 5" %7

(3) Binomial series (1 +2)* =1+ > 7" a(a_l)(a_j!)"'(a_n+1)x”.

Continuity, integration and differentiation of power series.

Theorem. Power series define a continuous function on the interior of the interval of
conveggence.

Since the partial sums of a power series are polynomials, hence are continuous functions.
We will use the following theorem to get the continuity of the power series from its partial
sums. We define the distance between two functions f, g by

\f — gl =lub.e—rr)lflx) —g(z)|

Definition. A sequence of functions { fx,} converges uniformly to a limit function f if for
any given € > 0 there is a N(e¢) such that n > N(e) implies that |fi — f| < €. In this case
we will write

k“lﬂof’“ = I

Theorem. Suppose that sequence of continuous functions {fx} on (—R,R) converges
uniformly to a limit function f. Then f is a continuous function on (—R, R).

Proof. For any a € (—R, R), since

[f(@) = fa)| < [f(@) = fe(@)] + | fr(x) = fr(a)] + [fx(a) = fla)].

For given € > 0, we can fix some large k such that |fx — f| < 5. And since f}, is continuous
function , there is a § > 0 such that , |z — a| < 0 implies |fx(z) — fx(a)| < 5. Put them
together we have

@)~ fa)l <5+ 5+5=e

Proof of the continuity of the power series. For any x € (—R, R), fix r < R such that
x € [—r,r]. Then

o m o o
> ana” =Y anz[ <D anz™[ <> fan| .
0 0

m—+1 m—+1

As we know from r < R,>" (" an||r"| converges, so the > |an||r"| goes to zero as m
goes to 0o. So Y o a,x™ is continuous on [—r,r] and this is true for all 0 < r, R. So
>0 anx™ is continuous on (—R, R).
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Theorem. The power series Y o anx™, its term by trem differentiation power series
oo n—1 : - - - 0 _a, ,n+l

Y1 napx"”, and its term by term integration power series ) " it have same

radius of convergence.

Proof. Letr their radius convergence be R, Ry, R; respectively. Since the series 280 anx"

oo n : : X a n+1 X a n+1 X a
and ) ;" apz™ have same radius R. Theseries ) g~ 2™, 307 sbera™ ™ and z ) o) n_'?lx

have the same radius of convergence R;. Hence R; > R and also R > R, since Zo anT"™
is the term by term integration series of Y 7° na,z"~!. In order to show that R = R4, we
will show that for any € (—R,R) >.|" na,x" ! converges absolutely. Fix some r such
that |z| < r < R and apply the limit comarison theorem sine

n—1|

nla,x n |zl _

— = () -0 as n— oo,
lanrm™ ror
which prove that R = R4 and similarly R = R;.

Next we will show that integration of power series can be done by term by term inte-
gration.

Theorem. fongoant”dt: o ™ ntl

Proof. For given z € (—R, R),
| / Zant”dt > b = / S atndt] < / S falal"d,
0

m—+1 m—+1
and last integral is || Zm—l—l |an||z|™ which will goes to zero as m — oo due to the absolute
convergence of >~ a,x"

In order to show that differentiation of power series can be done by term by term
differentiation, we need the following theorem (we will skip the proof).

Theorem. Suppose that a sequence of differentiable function { fy,} converges uniformly to
a limit function f, and {f}.} also converges to a limit function g. Then f is differentiable
and f' =g.

Theorem. L (3 anz") =37 nana™*

Proof. Inorder to apply the theorem above , we have to make sure that the derivetives of

the partial sums converges uniformly on [—r,7] for all » < R. But since R — dg, this is
true, so the proof is complete.

Remark. A function defined by a power series is call a real analytic function. Suppose
that f(x) = > o anx™, then f%*)(0) = klay. So real analytic function can only be deinned
by unique powerseries.

Example.

(1) a 1$)2 = ((1 x)) 21 nx"
(2) 1H(1+93) oxld—ﬁ =27 (=17 1%,
(3) tan ox 1+t2 Zo Y ;:.:117
(4)

4) sin™ —fo 1t2
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10.9 POWER SERIES COMPUTATION

Example.

(1) V105 = 10v/1.05,
2) A= [T sigy
Algebra of power series.

Theorem. Suppose that > o ana™, > o bpa™ have radius of convergence R > 0, then

(1) X0 (ana™ +bpx™) = (30 anz™) + (Xg baz™),
(2) Y0 enz™ = Xy anz™) (X bua™) where ¢, = > o ajbn_j,

have radius of convergence R.

Proof. (1) is clear ,we only have to prove (2). Let
(1) A= 55 000" B = ¥ bt d = 0 labosle
(2) A=327 lana®|, A™ = 370" lana™|, B = 325 [baz™|, B™ = 325" [baa™],
(3) € = 535 lena], O™ = S5 e, D = 3¢ [dua™], D™ = 50" .
Since
C™ <D™ < A™B™ < AB,

that proves ZSO cpx™ converges absolutely. Also
|AB — Z cnz”| < AB — DIF],

that proves (2).

Example. tanx cosx = sinx

Indeterminate forms.

Example.
: sin z—tan !
(1) limg—o “LFEat"

(2) limg_y {2£.

SERIES SOLUTION OF DIFRFERENTIAL EQUATION

Example.
(1) ¥ +2y =0,
(2) ( )y +2?J—0
(4) y” +y =0,
(5) y' — zy = 0,
(6) xy"” +y' + xy = 0 Bessel equation.



