
CHAPTER 10, INFINITE SERIES

10.2 Infinite Sequence

Definition.
a1, a2, a3, · · · , {an}∞n=1, {an}∞1 , {an}.

an = f(n).

Example.

(1) { 1
n}∞1 , {10n}∞1 , {√3n− 7}∞3 , {sin nπ

2 }, {3 + (−1)n}.
(2) {2, 3, 5, 7, 11, 13, 17, 23, · · · },
(3) {3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, · · · },
(4) Fibonacii sequemce F1 = 1, F2 = 1, Fn+1 = Fn +Fn−1, n > 2(recurrently definded)

,
(5) A0 = 100, An+1 = An ∗ (1.1)(recurrently definded).

Limit of Sequence.

Definition. A sequence {an} converges to a limit L if for any ε > 0 there is N(ε) such
that n ≥ N(ε) implies that |an −L| < ε, in this case we write limn→∞ an = L. A sequence
diverges if it does not converge.

Example.( limn→∞ 1
n = 0. {(−1)n} diverges.

Limit Laws.

Theorem. Suppose that limn→∞ an = A, limn→∞ bn = B, then

(1) limn→∞ can = cA
(2) limn→∞(an + bn) = A + B
(3) limn→∞ anbn = AB
(4) limn→∞ an

bn
= A

B if B �= 0.

Theorem. (Substitution law) If limn→∞ an = a and limn→∞ f(an) = L , then limn→∞ f(an) =
L.

Theorem. (Squeeze law) If an ≤ bn ≤ cn and limn→∞ an = L = limn→∞ cn, then
limn→∞ bn = L.

Example.

(1) limn→∞ 7n2

5n2−3 = 7
5 ,

(2) limn→∞ cos n
n

= 0,
(3) If a > 0, limn→∞ a

1
n = 1,
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2 CHAPTER 10, INFINITE SERIES

(4) limn→∞
√

4n−1
n+1

= 2,
(5) If |r| < 1 then limn→∞ rn = 0.
(6) limn→∞ ln n

n = 0,
(7) limn→∞ n

1
n = 1,

(8) limn→∞ 3n3

e2n = 0.

Definition. A sequence {an} is bounded sequence if there exists M such that |an| ≤ M
for all n.

Theorem. Convergent sequences are bounded sequence.

Definition. A sequence {an} is monotonic sequence if an ≥ (≤)an+1 for all n.

Bounded monotonic sequences.

Theorem. Bounded monotonic sequences are convergent sequences.

Example. a1 =
√

6, an+1 =
√

6 + an, n ≥ 1 In general

Example.(Exploration 1 page 732) a1 =
√

q, an+1 =
√

q + pan, n ≥ 1

Example.Exer. 56 page 731.

Example.(Exploration 2 page 732) a1 = p, an+1 = p + q
an

.

Example.a1 = a ≥ 0, an+1 = 1+a2
n

2 , converges if and only if 0 ≤ a ≤ 1.

Definition. A sequence {bn} is a subsequence of {an} if bn = aλ(n) for n = 1, 2, 3 · · · and
λ is an increasing function from N to N.

Example. an = 1
n , bn = 1

2n , cn = 1
2n .

Theorem. If {an} converges to L, then every subsequence also converges to L

Definition. A sequence {an} is a Cauchy sequence if for any ε > 0 there is N(ε) such
that m ≥ n ≥ N(ε) implies that |an − am| < ε.

Theorem. A sequence is a convergent sequence iff it is a Cauchy sequence.

Proof.

(1) Choose c, d such that c ≤ an ≤ d for all n, and let L = d − c.
(2) Let c1 = c, d1 = d and choose N1 such that for all m > n ≥ N1 we have |am−an| <

L
4 .

(3) Let c2 = max(c, aN1 − L
4
), d2 = min(d, aN1 + L

4
), then c2 ≤ an ≤ d2 for all n ≥ N1

and d2 − c2 ≤ L
2 . Choose N2 such that for all m > n ≥ N2 we have |am − an| < L

8 .
(4) Assume we have done k step. Let ck+1 = max(c, aNk)− L

2k , d2 = min(d, aNk ) + L
2k ,

then ck+1lean ≤ dk+1 for all n ≥ Nk+1 and dk+1−ck+1 ≤ L
2k+1 . Choose Nk+2 such

that for all m > n ≥ Nk+2 we have |am − an| < L
2k+2 .
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(5) Now we have c1 ≤ c2 ≤ cdotscn ≤ · · · ≤ dn ≤ · · · ≤ d2 ≤ d1. So {cn} converges to
the l.u.b. C and {dn} converges to the g.l.b.D and D ≥ C . But since dn ≥ D ≥
C ≥ cn for all n, so D = C .

(6) Let L = D = C , then for n ≥ Nk we have |an − L| ≤ L
2k .

�
Remark. In case of a recursiveely definded sequence an+1 = f(an), you can use the
solution x = f(x) to determine the limit only after you show that the sequence converges.

10.3 Infinite series and convergence

Infinite series and their partial sum.

Infinite series
∞∑
1

an

partial sum up to m-th terms Sm =
m∑
1

an

Remark. Every sequence can be written as the squence of partial sums of some series.

Definition. A series
∑∞

1 an converges (or is convergent) to a sum S, provided that the
limit S = limm→∞ Sm exists. Otherwise the series

∑∞
1 an diverges.

Example.
(1)

∑∞
1 (1

2)n = 1,
(2)

∑∞
1 (−1)n diverges,

(3)
∑∞

1
1

n(n+1) = 1.

Definition. Geometry series a0 = a, an+1 = ran.

Example.
∑∞

1
2
3n

Theorem. A geometric series converges to a
1−r if |r| < 1. Diverges if |r| ≥ 1.

Example.
(1) a = 1, r = − 2

3 ,
(2)

∑∞
1

22n−1

3n .

Theorem. If
∑∞

1 an = A,
∑∞

1 bn = B, then

(1)
∑∞

1 (an + bn) = A + B,
(2)

∑∞
1 can = cA.

Example.
(1) 0.555 · · · ,
(2) 0.72828 · · · ,
(3) Paul and Mary, r = (5

6 )2, a1 = 1
6 , b1 = 1

6
5
6 .
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Remark. A real number is a rational number if and only if its decimal form is periodic.

Theorem. (n-th term test) If
∑∞

1 an converges then limn→∞ an = 0.

Example.
∑∞

1 (−1)n−1n2,
∑∞

1
n

3n+1 both diverge

Theorem.
∑∞

1
1
n diverges

Theorem. If an = bn for all n ≥ N , then either both
∑∞

1 an,
∑∞

1 bn converge or both
diverge.

Theorem.
∑∞

1 an converges if and only if for any ε > 0 there is N(ε) such that for all
N(ε) ≤ n < m, implies |∑m

n ai| < ε.

10.4 Taylor polynomials and Taylor series

Taylor polynomials.
m∑
0

f(k)(a)
k!

(x − a)k

is the Taylor polynomial of f center at a up to m-th terms.

Example.

(1) 1
1−x , a = 0,

∑m
0 xk,

(2) lnx,a = 1,
∑m

1
(−1)k−1(x−1)k

k ,
(3) ex, a = 0,

∑m
0

xk

k! .

Theorem. (Taylor’s formulae) Suppose that f is (n + 1)-times differentiable on an open
interval I contains a, then for each x ∈ I

f(x) =
n∑
0

f(k)(a)
k!

(x − a)k +
f(n+1)(z)
(n + 1)!

(x − a)(n+1)

where z is between a and x.

Proof. Let F (t) = (x−t)n+1

(n+1)! , then F (x) − F (a) = − (x−a)n+1

(n+1)! and F ′(z) = − (x−z)n

n! .

Let G(t) = f(x) − ∑n
0

f(k)(t)
k! (x − t)k, then G(x) − G(a) = f(x) − ∑n

0
f(k)(a)

k! (x − a)k,

and G′(z) = − fn+1(z)
n! (x − z)n.

Apply the generalized M.V.T. to F,G we get [F (x) − F (a)]G′(z) = [G(x) −G(a)]F ′(z)
to complete the proof.

Example. ln 1.1 = (0.1) − (0.1)2

2 + (0.1)3

3 − (0.1)4

4z . ln 1.1 ≈ 0.095333.
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Definition. Taylor series of f center at a is

∞∑
0

f(k)(a)
k!

(x − a)k

.

Example.

(1) ex =
∑∞

0
xk

k! ,

(2) cos x =
∑∞

0
(−1)nx2n

2n! , sin x =
∑∞

0
(−1)nx2n+1

(2n+1)! ,

(3) e−t2 =
∑∞

0
(−1)nt2n

n! ,

(4) sin 2t =
∑∞

0
(−1)n22n+1t2n+1

(2n+1)! .

From (1),(2) we have the Euler formulae eiθ = cos θ + i sin θ. The following example is to
find an approximation π.

1
1 + x

= 1 − x + x2 − x3 + · · · + (−1)nxn +
(−x)n+1

1 + x

1
1 + t2

= 1 − t2 + t4 − t6 + · · · + (−1)nt2n +
(−t2)n+1

1 + t2

tan−1 t = 1 − t3

3
+

t5

5
· · · (−1)nt2n+1

2n + 1
+

∫ t

0

(−t2)n+1

1 + t2
dt

π

4
= 1 − 1

3
+

1
5
· · · + (−1)n

2n + 1
+ Rn

with |Rn| ≤ 1
2n+3 .

10.5 Integral Test

Theorem. Let
∑∞

1 an be a series with an ≥ 0 for all n. Then {Sm} is an increasing
sequence, so it converges if and only if it is bounded.

Theorem. (Integral test) Suppose that f is a positive decreasing continuous function
on [1,∞) and an = f(n) for all n. Then the series

∑∞
1 an and the improper integral∫ ∞

1
f(x)dx are either both convergent or both divergent.

Proof. Since

a1 +
∫ m

1

f(x)dx ≥
m∑
1

an ≥
∫ m+1

1

f(x)dx,

so they are either both bounded or both unbounded.

Example.
(1)

∑∞
1

1
n ,

(2)
∑∞

1
1

np .
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Theorem. (Remainder estimate)

∫ ∞

n+1

f(x)dx ≤ Rn ≤
∫ ∞

n

f(x)dx.

Example. π
6
≈ 1 + 1

22 + 1
32 + · · · 1

n2 with 1
n+1

≤ Rn ≤ 1
n
.

10.6 Comparison Test

Theorem. If
∑∞

1 an and
∑∞

1 bn are two series with positive terms such that an ≤ bn for
all n, then

(1) If
∑∞

1 bn convegres then
∑∞

1 an also converges.
(2) If

∑∞
1 an divegres then

∑∞
1 bn also diverges.

Theorem. If
∑∞

1 an and
∑∞

1 bn are two series with positive terms such that an ≤ bn for
all n ≥ N for some N and

∑∞
1 bn convegres, then

∑∞
1 an also converges.

Example.

(1)
∑∞

1
1

n(n+1(n+2),
(2)

∑∞
1

1√
2n−1

,
(3)

∑∞
1

1
n! .

Limit comparison test.

Theorem. If
∑∞

1 an and
∑∞

1 bn are two series with positive terms such that limn→∞ an

bn
=

L for some 0 < L < ∞. Then either both
∑∞

1 an and
∑∞

1 bn are both convergent or∑∞
1 an and

∑∞
1 bn are both divergent.

Proof. There exists N such that ,for all n ≥ N , L
2 ≤ an

bn
≤ 3L

2 . That means an ≤ 3L
2 bn

and bn ≤ 2
L
an for n ≥ N .

Remark. Suppose that
∑∞

1 an converges and bn ≤ Can for all n ≥ N , then
∑∞

1 bn

converges.

Example.

(1)
∑∞

1
3n2+n
n4+

√
n
,

(2)
∑∞

1
1

2n+ln n ,
(3)

∑∞
1

1
n2+

√
n
|Rn| ≤ 1

n
.

Rearrangement and Grouping.

Definition. Aseries
∑∞

1 bn is a rearrangement of a series
∑∞

1 an, if there is a one to one
onto function σ : N → N such that bn = aσ(n) for all n.
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Theorem. If
∑∞

1 an is a convergent series with positive terms, then any rearrangement
of it will converge to the same limit.

Proof. Suppose that bn = aσ(n) be a rearrangement of
∑∞

1 an. Let λ(n) = maxn
1{σ(j), it

is clear that Bn ≤ Aλ(n) for all n. Hence Bn ≤ ∑∞
1 an for all n, which implies

∞∑
1

bn ≤
∞∑
1

an.

Conversely
∑∞

1 an is also a rearrangement of
∑∞

1 bn. We also have

∞∑
1

an ≤
∞∑
1

bn.

Theorem. If
∑∞

1 an os a convergent series, then any grouping of terms will also converge
to the same limit.

Example.
∑∞

0 (−1)n.

10.7 Alternting series and Absolute convergence

Definition. Suppose that an ≥ 0,then
∑∞

1 (−1)n−1an is an alternting series .

Theorem. (Alternating series theorem) Suppose that (1) an ≥ an+1 for all n and (2)
limn→∞ an = 0, then

∑∞
1 (−1)n−1an converges.

Proof.

(1) Since S2k+1 = S2k−1 − (a2k − a2k+1),then {S2k+1} is decreasing.
(2) Since S2k+2 = S2k + (a2k+1 − a2k+2), then {S2k} is increasing.
(3) Since S2k+1 = S2k + a2k+1, then S2k+2 ≥ S2k.
(4) For l < k, S2l+1 ≥ S2k+1 ≥ S2k and for l > k, S2l+1 ≥ S2l ≥ S2k.
(5) Every S2k is a lower bound of {S2n+12}, so{S2n+1} converges to So which is the

g.l.b. of {S2n+1}.
(6) Every S2k+1 is an upper bound of {S2n}, so {S2n} converges to Se, mwhich is the

l.u.b of {S2n}.
(7) So ≥ S2n for all n and Se ≤ S2n+1 for all n and So ≥ Se.
(8) From 0 ≤ So − Se ≤ S2k+2 − S2k = a2k+1, let k → ∞ we get So = Se.

�

Example.

(1)
∑∞

1
(−1)n+1

2n−1 ,

(2)
∑∞

1
(−1)n+1n

2n−1 .
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Theorem. (Remainder estimate)

|Rn| ≤ an+1.

Example. e−1 ≈ 1 − 1
2! + 1

3! · · · (−1)n−1

n! |Rn| < 1
(n+1)! .

Definition. If
∑∞

1 |an| converges, we say
∑∞

1 an converges absolutely. If
∑∞

1 an con-
verges but

∑∞
1 |an| diverges, we say

∑∞
1 an converges conditionally.

Theorem. If
∑∞

1 |an| converges, then
∑∞

1 an converges .

Proof. Let a+
n = |an|+an

2 , a−
n = |an|−an

2 , (a+
n = max(an, 0), (a−

n = min(−an, 0)).
Then |an| = a+

n + a−
n , an = a+

n − a−
n and 0 ≤ a+

n , a−
n ≤ |an|.

If
∑∞

1 |an| converges, then both
∑∞

1 a+
n and

∑∞
1 a−

n converge. Which implies that∑∞
1 an converges.

Remark. If
∑∞

1 an converges conditionally, then both
∑∞

1 a+
n and

∑∞
1 a−

n diverge.

Example.
(1)

∑∞
0 (− 1

3 )n = 3
4 ,

(2)
∑∞

0 (1
3
)n = 3

2
,

(3)
∑∞

1
cos n
n2 .

Theorem. If
∑∞

1 an converges conditionally, then for any given real number L, there is
a rearrangement

∑∞
1 bn of

∑∞
1 an, such that

∑∞
1 bn = L.

Ratio Test.

Theorem. If limn→∞ |an+1
an

| = ρ, then

(1) ρ < 1 implies
∑∞

1 |an| converges,
(2) ρ > 1 implies

∑∞
1 |an| diverges,

(3) ρ = 1 no conclusion.

Theorem. If |an+1
an

| ≤ ρ < 1,for all n ≥ N for some N , then
∑∞

1 |an| converges.

Example.

(1)
∑∞

1
(−2)n

n! ,
(2)

∑∞
1

n
2n ,

(3)
∑∞

1
3n

n2 .

Root Test.

Theorem. If limn→∞ |an| 1
n = ρ, then

(1) ρ < 1 implies
∑∞

1 |an| converges,
(2) ρ > 1 implies

∑∞
1 |an| diverges,

(3) ρ = 1 no conclusion.

Theorem. If |an| 1
n ≤ ρ < 1,for all n ≥ N for some N , then

∑∞
1 |an| converges.

Example.
∑∞

1
1

2n+(−1)n .
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10.8 Power series

∞∑
0

anxn.

Domain of convergence. The set {x :
∑∞

0 anxn converges}.
Theorem. Suppose that

∑∞
0 anxn

0 converges for some x0 �= 0, then
∑∞

0 anxn converges
absolutely for all {x : |x| < |x0|}.
Proof. Since

∑∞
0 anxn

0 converges, anxn
0 → 0 as n → ∞. In particalar there exist N such

that for n ≥ N , |anxn
0 | < 1. Now for fix x with |x| < |x0|, |anxn| = |anxn

0 |( |x|
|x0| )

n. So∑∞
N |anxn| ≤ ∑∞

N ( |x|
|x0| )

n, which converges due to |x| < |x0|. The proof is complete.

Remark.The domain of convergence must be one of the following
(1) {0},∑∞

0 n!xn,

(2) R,
∑∞

0
xn

n! ,

(3) [−R,R],
∑∞

0
xn

Rnn2 ,

(4) [−R,R),
∑∞

0
xn

Rnn

(5) (−R,R],
∑∞

0
(−x)n

Rnn

(6) (−R,R),
∑∞

0 xn ,

R is called the radius of convergence.

Theorem. Either limn→∞
|an+1|
|an| = ρ or limn→∞ |an| 1

n = ρ, then R = 1
ρ .

Example.

(1)
∑∞

1
xn

n3n ,
(2)

∑∞
1

(−2x)n

(2n)! ,
(3)

∑∞
1 nnxn,

(4)
∑∞

0
(−1)nx2n

2n! .

Power series center at c.

∞∑
0

an(x − c)n.

Example.
∑∞

0
(−1)n(x−3)n

n4n .

Power series representation of function center at a.

f(x) =
∞∑
0

f(k)(a)
k!

(x − a)k .
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Taylor series if a = 0 is called Maclaurin series.

Example.

(1) e−x, cosh x, sinhx, e−x2
,

(2) Bessel function J0(x) =
∑∞

0
(−1)nx2n

22n(n!)2 ,

(3) Binomial series (1 + x)α = 1 +
∑∞

0
α(α−1)(α−2)···(α−n+1)

n! xn.

Continuity, integration and differentiation of power series.

Theorem. Power series define a continuous function on the interior of the interval of
conveggence.

Since the partial sums of a power series are polynomials, hence are continuous functions.
We will use the following theorem to get the continuity of the power series from its partial
sums. We define the distance between two functions f, g by

|f − g| = l.u.b.x∈(−R,R)|f(x) − g(x)|.

Definition. A sequence of functions {fk} converges uniformly to a limit function f if for
any given ε > 0 there is a N(ε) such that n ≥ N(ε) implies that |fk − f | < ε. In this case
we will write

lim
k→∞

fk = f.

Theorem. Suppose that sequence of continuous functions {fk} on (−R,R) converges
uniformly to a limit function f . Then f is a continuous function on (−R,R).

Proof. For any a ∈ (−R,R), since

|f(x) − f(a)| ≤ |f(x) − fk(x)| + |fk(x) − fk(a)| + |fk(a) − f(a)|.

For given ε > 0, we can fix some large k such that |fk −f | < ε
3 . And since fk is continuous

function , there is a δ > 0 such that , |x − a| < δ implies |fk(x) − fk(a)| < ε
3 . Put them

together we have
|f(x) − f(a)| <

ε

3
+

ε

3
+

ε

3
= ε.

Proof of the continuity of the power series. For any x ∈ (−R,R), fix r < R such that
x ∈ [−r, r]. Then

|
∞∑
0

anxn −
m∑
0

anxn| ≤ |
∞∑

m+1

|anxn| ≤
∞∑

m+1

|an||rn|.

As we know from r < R,
∑∞

0 |an||rn| converges, so the
∑∞

m+1 |an||rn| goes to zero as m

goes to ∞. So
∑∞

0 anxn is continuous on [−r, r] and this is true for all 0 < r,R. So∑∞
0 anxn is continuous on (−R,R).
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Theorem. The power series
∑∞

0 anxn, its term by trem differentiation power series∑∞
1 nanxn−1, and its term by term integration power series

∑∞
0

an

n+1xn+1 have same
radius of convergence.

Proof. Letr their radius convergence be R,Rd, Ri respectively. Since the series
∑∞

0 anxn

and
∑∞

1 anxn have same radius R. The series
∑∞

0
an

n+1xn+1,
∑∞

1
an

n+1xn+1, and x
∑∞

1
an

n+1xn

have the same radius of convergence Ri. Hence Ri ≥ R and also R ≥ Rd since
∑∞

0 anxn

is the term by term integration series of
∑∞

1 nanxn−1. In order to show that R = Rd, we
will show that for any x ∈ (−R,R)

∑∞
1 nanxn−1 converges absolutely. Fix some r such

that |x| < r < R and apply the limit comarison theorem sine

n|anxn−1|
|anrn

=
n

r
(
|x|
r

)n−1 → 0 as n → ∞,

which prove that R = Rd and similarly R = Ri.

Next we will show that integration of power series can be done by term by term inte-
gration.

Theorem.
∫ x

0

∑∞
0 antndt =

∑∞
0

an

n+1xn+1.

Proof. For given x ∈ (−R,R),

|
∫ x

0

∞∑
0

antndt −
m∑
0

an

n + 1
xn+1| = |

∫ x

0

∞∑
m+1

antndt| ≤
∫ x

0

∞∑
m+1

|an||x|ndt,

and last integral is |x|∑∞
m+1 |an||x|n which will goes to zero as m → ∞ due to the absolute

convergence of
∑∞

0 anxn

In order to show that differentiation of power series can be done by term by term
differentiation, we need the following theorem (we will skip the proof).

Theorem. Suppose that a sequence of differentiable function {fk} converges uniformly to
a limit function f , and {f ′

k} also converges to a limit function g. Then f is differentiable
and f ′ = g.

Theorem. d
dx

(
∑∞

0 anxn) =
∑∞

1 nanxn−1.

Proof. Inorder to apply the theorem above , we have to make sure that the derivetives of
the partial sums converges uniformly on [−r, r] for all r < R. But since R − dR, this is
true, so the proof is complete.

Remark. A function defined by a power series is call a real analytic function. Suppose
that f(x) =

∑∞
0 anxn, then f(k)(0) = k!ak. So real analytic function can only be deinned

by unique powerseries.

Example.
(1) 1

(1−x)2 = ( 1
(1−x))

′ =
∑∞

1 nxn−1

(2) ln(1 + x) =
∫ x

0
dt

1+t =
∑∞

1 (−1)n−1 xn

n ,

(3) tan−1 x =
∫ x

0
dt

1+t2 =
∑∞

0 (−1)n x2n+1

2n+1 ,
(4) sin−1 x =

∫ x

0
dt√
1−t2

.
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10.9 Power series computation

Example.
(1)

√
105 = 10

√
1.05,

(2) A =
∫ π

−π
sin x

x dx.

Algebra of power series.

Theorem. Suppose that
∑∞

0 anxn,
∑∞

0 bnxn have radius of convergence R > 0, then

(1)
∑∞

0 (anxn + bnxn) = (
∑∞

0 anxn) + (
∑∞

0 bnxn),
(2)

∑∞
0 cnxn = (

∑∞
0 anxn)(

∑∞
0 bnxn) where cn =

∑n
0 ajbn−j ,

have radius of convergence R.

Proof. (1) is clear ,we only have to prove (2). Let
(1) A =

∑∞
0 anxn, B =

∑∞
0 bnxn, dn =

∑n
0 |ajbn−j |,

(2) Ã =
∑∞

0 |anxn|, Ãm =
∑m

0 |anxn|, B̃ =
∑∞

0 |bnxn|, B̃m =
∑m

0 |bnxn|,
(3) C̃ =

∑∞
0 |cnxn|, C̃m =

∑m
0 |cnxn|, D̃ =

∑∞
0 |dnxn|, D̃m =

∑m
0 |dnxn|.

Since
C̃m ≤ D̃m ≤ ÃmB̃m ≤ ÃB̃,

that proves
∑∞

0 cnxn converges absolutely. Also

|AB −
m∑
0

cnxn| ≤ ÃB̃ − D̃[ m
2 ],

that proves (2).

Example. tan x cos x = sinx

Indeterminate forms.

Example.

(1) limx→0
sin x−tan−1 x

x2 ln(1+x) ,
(2) limx→1

ln x
1−x .

Series solution of difrferential equation

Example.
(1) y′ + 2y = 0,
(2) (x − 3)y′ + 2y = 0,
(3) x2y′ = y − x − 1,
(4) y′′ + y = 0,
(5) y′′ − xy = 0,
(6) xy′′ + y′ + xy = 0 Bessel equation.


