CHAPTER 1, FUNCTIONS, GRAPHS AND MODELS

1.1 FUNCTIONS AND MATHEMATICAL MODELINGS

Functions.

Functions. A real valued function f defined on a set of real numbers D is a rule that assigns each $x \in D$ exactly one real number denoted by f(x). D is the domain of f, and $f(D) = \{y : y = f(x), x \in D\}$ the range of f.

Example.

(1) $f(x) = x^2$, (2) $f(x) = x^2 + x - 3$, (3) $h(x) = x^2, x \ge 0, = \sqrt{-x}, x < 0$ (4) $[[x]] = n, n \le x < n + 1$, (5) FLOOR(x) = [[x]], ROUND(x) = [[x + 1/2]], CEILING(x) = -[[-x]], (6) $\sin x, \sin^{-1} x$.

Domain, Intervals.

Example.

(1)
$$g(x) = \frac{1}{2x+4},$$

(2) $h(x) = \frac{1}{\sqrt{2x+4}}.$

Mathematical Modelings.

Example.

- (1) Example 8 0n page 5 $V = x^2y = 125, A = 4xy + 2x^2$,
- (2) Example 9 0n page 6 A = xy, 180 = 6x + 10y.

1.2 Graphs of Equations and Functions

Graph of Equation. The graph of an equation of two variables x and y is the set of points satisfy the equation.

$$f(x,y) = c.$$

Example. $(x-3)^2 + (y-4)^2 = 100$

Translation principle.

Graph(f(x, y) = 0) + (h, k) = Graph(f(x - h, y - k) = 0)

Example. $x^2 + y^2 - 4x + 6y = 12$

Typeset by \mathcal{AMS} -TEX

Graphs of Functions. The graph of a function is the graph of y = f(x).

Example.

(1) |x|, (2) $f(x) = \frac{1}{x}$, (3) [[x]], (4) $g(x) = x - [[x]] - \frac{1}{2}$, (5) $f(x) = x^2$, (6) $g(x) = \sqrt{x}$.

Remark. $y = ax^2 + bx + c$ can be written as $y - c + \frac{b^2}{4a} = a(x + \frac{b}{2a})^2$.

(1) $y = 2x^2 - 4x - 1$ is $y + 3 = 2(x - 1)^2$, (2) $A = \frac{3}{5}(30x - x^2)$ is $A - 135 = -\frac{3}{5}(x - 15)^2$.

Remark. A graph G is a graph of a function on [a, b] if and only if every vertical line $x = c : c \in [a, b]$ meets G in exactly one point.

1.3 Algebraic Functions

Power Functions. $x^n, x^{\frac{p}{q}}$.

Combination of functions.

(1) cf(x) = c(f(x)),(2) (f+g)(x) = f(x) + g(x).

Example.

(1)
$$f(x) = x^2 + 1, g(x) = x - 1,$$

(2) $f(x) = \sqrt{1 - x}, g(x) = \sqrt{1 + x}.$

Polynomials. $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0.$

Rational Functions. $f(x) = \frac{p(x)}{q(x)}$.

Example.

(1)
$$\frac{(x+2)(x-1)}{x(x+1)(x-2)}$$
,
(2) $\frac{x(x+1)(x-2)}{(x+2)(x-1)}$.

Algebraic Functions. $(16 - x^4)^{1/4}, \sqrt{x^2 - 16}, \sqrt{x^2}, (x^2(x-2)^2)^{1/3}.$

1.4 TRANSCENDENTAL FUNCTIONS

Transcendental functions. Any function which is not algebraic function.

Elementary transcendental functions.

Trigonometric Functions. $\sin x$, $\cos x$, $\tan x$ etc..

Composition of Functions. The composition of two functions f and g, $h = f \circ g$ is defined by h(x) = f(g(x)) for all x in the domain of g such that g(x) is in the domain of f.

Example.

(1) $f(x) = \sqrt{x}, g(x) = 1 - x^2,$ (2) $f(x) = x^2, g(x) = \cos x, h(x) = (x^2 + 2)^{3/2}.$

Exponential Functions. $a > 0, a^x$.

 $32^{-t}\cos 4\pi t$

Inverse Function. g(y) is the inverse function of f(x) provided that g(y) = x if and only if f(x) = y.

Example. $\sin^{-1} x$, $\cos^{-1} x$.

Logarithmic Function. $y = \log_a x$ if and only if $a^y = x$.

Implicit function. From F(x, y) = 0 define y is a function of x.

Transcendental equation. $x = \tan x$

Can you brlieve what you see ?. $y = \sin 120\pi x$.