CHAPTER 0

0.1 Two Examples

Find root by bisection method. Let P(x) be a polynomial such that P(a) < 0 and P(b) > 0. Find a $c \in (a, b)$ such that P(c) = 0.

Bisection method.

- (1) If $P(\frac{a+b}{2}) < 0$, let $a_1 = \frac{a+b}{2}$, $b_1 = b$. If $P(\frac{a+b}{2}) > 0$, let $a_1 = a, b_1 = \frac{a+b}{2}$. (2) If $P(\frac{a_1+b_1}{2}) < 0$, let $a_2 = \frac{a_1+b_1}{2}$, $b_2 = b_1$. If $P(\frac{a_1+b_1}{2}) > 0$, let $a_2 = a_1, b_2 = \frac{a_1+b_1}{2}$. (3) If $P(\frac{a_n+b_n}{2}) < 0$, let $a_{n+1} = \frac{a_n+b_n}{2}$, $b_{n+1} = b_n$. If $P(\frac{a_n+b_n}{2}) > 0$, let $a_{n+1} = a_{n+1} = b_n$. $a_n, b_{n+1} = \frac{a_n + b_n}{2}.$

Let $I_n = [a_n, b_n]$, by induction we have $|I_n| = b_n - a_n = (\frac{1}{2})^n (b - a)$. We also have $a_n \leq a_{n+m} \leq b_{n+m} \leq b_n$, hence $|a_n - a_{n+m}| \leq (\frac{1}{2})^n (b-a)$ for all n, m. Since there is a root c_n in I_n , so we have an effective way to find a good approximation of a root. $(|a_n - c_n|, |b_n =$ $|c_n| < \left(\frac{1}{2}\right)^n (b-a).$

Find the area of the unit dick (π) .

Approximations. Let A_n be the area of the regular n-gon inscribed in the unit disc, and let B_n be the area of the regular *n*-gon out-tangent to the unit disc. It is easy to see that $A_n = n \sin \frac{\pi}{n} \cos \frac{\pi}{n}, B_n = n \tan \frac{\pi}{n}.$

$$B_n - A_n = n \sin \frac{\pi}{n} \left(\frac{1}{\cos \frac{\pi}{n}} - \cos \frac{\pi}{n}\right) = n \frac{\left(\sin \frac{\pi}{n}\right)^3}{\cos \frac{\pi}{n}}.$$

Since $\cos \frac{\pi}{n} > \cos \frac{\pi}{3} = \frac{1}{2}$ and $\sin \frac{\pi}{n} \le \frac{\pi}{n}$, we have $B_n - A_n \le \frac{2\pi^3}{n^2}$ and $A_n \le \pi \le B_n$. So we have an effective way to find a good approximation of π .

In the two examples above, we believe that there exist solutions (the limit points exist). In fact we can prove it over real number system.

0.2 Completeness of real number system R

Theorem. Let $\{I_n = [a_n, b_n]\}$ be a sequence of bounded closed intervals such that $I_{n+1} \subset$ I_n for all n, and $|I_n| = b_n - a_n$ goes to 0 as n goes to ∞ . Then $\bigcap_{n=1}^{\infty} I_n$ is a single point.

Proof. First we show that $\bigcap_{n=1}^{\infty} I_n$ contains at most one point. We prove it by contradiction, assume that $\bigcap_{n=1}^{\infty} I_n$ contains c, c' such that $c \neq c'$. Then |c-c'| > 0, and for n large enough, $|I_n| < \frac{1}{2}|c-c'|$. By our assumption that $c \in I_n$, but then c' can not be in I_n , which is a contradiction.

For the existence of $c \in \bigcap_{n=1}^{\infty} I_n$, we need the following property of **R**.

Bounded above, Upper bound, Least upper bound. For a nonempty $S \subset \mathbf{R}$ to be bounded above if there is M such that $x \leq M$ for all $x \in S$. In this case we say that M is an upper bound of S.

Least upper bound. For a nonempty set S which is bounded above, an upper bound N is called the least upper bound if $N \leq M$ for all upper bound M of S denoted by **l.u.b**.S.

Remark. ($\forall \epsilon$ is for every ϵ , and $\exists \delta$ is there exists δ .)

- (1) There are no $x \in S$ such that $x > \mathbf{l.u.b.}S$.
- (2) For $\forall \epsilon > 0, \exists x \in S$ such that $\mathbf{l.u.b.}S \epsilon < x \leq \mathbf{l.u.b.}S$.

 $\mathbf{l.u.b.}(0,1) = 1, \mathbf{l.u.b.}[0,1] = 1$, the first case $\mathbf{l.u.b.}S \notin S$ and second case $\mathbf{l.u.b.}S \in S$. It is clear that the least upper bound is unique.(Exercise: prove it.)

AXIOM. (Least upper property of \mathbf{R}) Every nonempty subset S of \mathbf{R} , if S is bounded above, then S has the least upper bound.

Remark. The set of all rational numbers \mathbf{Q} does not have this property. The set of all integers \mathbf{Z} has this priperty.

Now we can complete the proof of the existence of $c \in \bigcap_{n=1}^{\infty} I_n$. Let $S = \{a_n\}$, then b_n is upper bound of S for all n. If we let c be the least upper bound of S, then we have $a_n \leq c \leq b_n$ for all n, which implies that $c \in \bigcap_{n=1}^{\infty} I_n$. Q.E.D

0.3 Some inequalities

Lemma. Let a > 0, then $|b| \le a$ if and only if $-a \le b \le a$.

Lemma.

(1) $|a+b| \le |a|+|b|$,

(2)
$$||a| - |b|| \le |a - b|$$

proof.

- (1) Since $-|a| \le a \le |a|, -|b| \le b \le |b|$, we have $-(|a|+|b|) \le a+b \le (|a|+|b|)$, then by the Lemma above $|a+b| \le |a|+|b|$.
- (2) From (1) let $b \to (b-a)$, we get $|b| \le |a| + |a-b|$. That means $-|a-b| \le |a| |b|$. By $a \to b, b \to a$ we get $-|b-a| \le |b| - |a|$ multiply byb -1 we get $|a-b| \ge |a| - |b|$. Again by the Lemma above, we have $||a| - |b|| \le |a-b|$.

0.4 Some logic statements

The following propositions are equivalent

- (1) A implies B,
- (2) $A \implies B$,
- (3) -B implies -A,
- (4) A is a sufficient condition of B,
- (5) B is a necessary condition of A,
- (6) B if A(If A is true then B is true.),
- (7) A only if B.(A will be true only if B is true.)

The following propositions are equivalent

- (1) A is equivalent to B,
- (2) $A \Leftrightarrow B$,
- (3) $A \equiv B$,
- (4) A is a necessary and sufficient condition of B,
- (5) A if only if B,
- (6) A iff B.

Mathematical induction. The method of mathematical induction in proving some statment involving n say P(n) is true for all n from n_0 (most cases $n_0 = 1$) on, consisting of two steps.

- (1) Initial step: show that $P(n_0)$ is true.
- (2) Induction step: assume that $P(n_0), \dots, P(k)$ are ture, show that P(k+1) is true.