
CHAPTER 0

0.1 Two Examples

Find root by bisection method. Let P (x) be a polynomial such that P (a) < 0 and
P (b) > 0. Find a c ∈ (a, b) such that P (c) = 0.

Bisection method.

(1) If P (a+b

2
) < 0, let a1 = a+b

2
, b1 = b. If P (a+b

2
) > 0, let a1 = a, b1 = a+b

2
.

(2) If P (a1+b1

2
) < 0, let a2 = a1+b1

2
, b2 = b1. If P (a1+b1

2
) > 0, let a2 = a1, b2 = a1+b1

2
.

(3) If P (an+bn

2
) < 0, let an+1 = an+bn

2
, bn+1 = bn. If P (an+bn

2
) > 0, let an+1 =

an, bn+1 = an+bn

2
.

Let In = [an, bn], by induction we have |In| = bn − an = (1

2
)n(b − a). We also have

an ≤ an+m ≤ bn+m ≤ bn, hence |an−an+m| ≤ (1

2
)n(b−a) for all n,m. Since there is a root

cn in In,so we have an effective way to find a good approximation of a root.(|an−cn|, |bn =
cn| < (1

2
)n(b − a).)

Find the area of the unit dick (π).

Approximations. Let An be the area of the regular n-gon inscribed in the unit disc, and
let Bn be the area of the regular n-gon out-tangent to the unit disc, It is easy to see that
An = n sin π

n
cos π

n
, Bn = n tan π

n
.

Bn − An = n sin
π

n
(

1

cos π

n

− cos
π

n
) = n

(sin π

n
)3

cos π

n

.

Since cos π

n
> cos π

3
= 1

2
and sin π

n
≤ π

n
, we hvae Bn −An ≤ 2π

3

n2 and An ≤ π ≤ Bn. So we
have an effective way to find a good approximation of π.

In the two examples above, we believe that there exist solutions (the limit points exist).
In fact we can prove it over real number system.

0.2 Completeness of real number system R

Theorem. Let {In = [an, bn]} be a sequence of bounded closed intervals such that In+1 ⊂
In for all n, and |In| = bn − an goes to 0 as n goes to ∞. Then ∩∞

n=1In is a single point.

Proof. First we show that ∩∞

n=1In contains at most one point. We prove it by contradiction,
assume that ∩∞

n=1In contains c, c′ such that c 6= c′. Then |c−c′| > 0, and for n large enough,
|In| < 1

2
|c − c′|. By our assumption that c ∈ In, but then c′ can not be in In, which is a

contradiction.

For the existence of c ∈ ∩∞

n=1In, we need the following property of R.
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Bounded above, Upper bound, Least upper bound. For a nonempty S ⊂ R to be
bounded above if there is M such that x ≤ M for all x ∈ S. In this case we say that M is
an upper bound of S.

Least upper bound. For a nonempty set S which is bounded above, an upper bound N
is called the least upper bound if N ≤ M for all upper bound M of S denoted by l.u.b.S.

Remark. (∀ǫ is for every ǫ, and ∃δ is there exists δ.)

(1) There are no x ∈ S such that x > l.u.b.S.
(2) For ∀ǫ > 0,∃x ∈ S such that l.u.b.S − ǫ < x ≤ l.u.b.S.

l.u.b.(0, 1) = 1, l.u.b.[0, 1] = 1, the first case l.u.b.S /∈ S and second case l.u.b.S ∈ S.
It is clear that the least upper bound is unique.(Exercise: prove it.)

AXIOM. (Least upper property of R) Every nonempty subset S of R, if S is bounded
above, then S has the least upper bound.

Remark. The set of all rational numbers Q does not have this property. The set of all
integers Z has this priperty.

Now we can complete the proof of the existence of c ∈ ∩∞

n=1In. Let S = {an}, then bn

is upper bound of S for all n. If we let c be the least upper bound of S , then we have
an ≤ c ≤ bn for all n, which implies that c ∈ ∩∞

n=1In. Q.E.D

0.3 Some inequalities

Lemma. Let a > 0, then |b| ≤ a if and only if −a ≤ b ≤ a.

Lemma.

(1) |a + b| ≤ |a| + |b|,
(2) ||a| − |b|| ≤ |a − b|

proof.

(1) Since −|a| ≤ a ≤ |a|,−|b| ≤ b ≤ |b|, we have −(|a| + |b|) ≤ a + b ≤ (|a| + |b|), then
by the Lemma above |a + b| ≤ |a| + |b|.

(2) From (1) let b → (b− a), we get |b| ≤ |a|+ |a− b|. That means −|a− b| ≤ |a| − |b|.
By a → b, b → a we get −|b−a| ≤ |b|−|a| multiply byb −1 we get |a−b| ≥ |a|−|b|.
Again by the Lemma above, we hvae ||a| − |b|| ≤ |a − b|.

0.4 Some logic statements

The following propositions are equirvalent

(1) A implies B,
(2) A =⇒ B,
(3) −B implies −A,
(4) A is a sufficient cvondition of B,
(5) B is a necessary condition of A,
(6) B if A(If A is true then B is true.),
(7) A only if B.(A will be true only if B is true.)
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The following propositions are equirvalent

(1) A is equivalent to B,
(2) A ⇔ B,
(3) A ≡ B,
(4) A is a necessary and sufficient condition of B,
(5) A if only if B,
(6) A iff B.

Mathematical induction. The method of mathematical induction in proving some stat-
ment involving n say P (n) is true for all n from n0(most cases n0 = 1) on, consisting of
two steps.

(1) Initial step: show that P (n0) is true.
(2) Induction step: assume that P (n0), · · · , P (k) are ture, show that P (k + 1) is true.




