CHAPTER O

0.1 Two EXAMPLES

Find root by bisection method. Let P(z) be a polynomial such that P(a) < 0 and
P(b) > 0. Find a c € (a,b) such that P(c) = 0.

Bisection method.

(1) If P(%£2) <0, let ag = 2FL, by = b. If P(%£2) >0, let a3 = a,by = 22,

(2) If P(2E0r) <0, let ag = 901 by = by, If P(“1F01) > 0, let ap = ay, by = 240

(3) If P(%nfbn) <bo, let apyr = 2t by = b, If P(22Eb2) > 0, let any1 =
anybn—i—l == %-

Let I, = [an,by], by induction we have |I,| = b, — a, = (%)"(b —a). We also have
an, < Gntm < bngm < by, hence |ay, —apqm| < (%)"(b—a) for all n, m. Since there is a root
¢ in I,,30 we have an effective way to find a good approximation of a root.(|a, —cy|, |bp, =

cn| < (3)"(b—a).)
Find the area of the unit dick (7).

Approximations. Let A, be the area of the regular n-gon inscribed in the unit disc, and
let B,, be the area of the regular n-gon out-tangent to the unit disc, It is easy to see that
A, = nsin 7 cos 7, B, = ntan 7.
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Since cos - >cos§:%andsm%§ %,wehvabeBn—AngQni2 and 4,, < 7w < B,,. So we

have an effective way to find a good approximation of .
In the two examples above, we believe that there exist solutions (the limit points exist).
In fact we can prove it over real number system.
0.2 COMPLETENESS OF REAL NUMBER SYSTEM R

Theorem. Let {I,, = [an,b,]} be a sequence of bounded closed intervals such that I, 11 C
I,, for all n, and |I,,| = b, — a,, goes to 0 as n goes to oo. Then N1, is a single point.

Proof. First we show that N72 ;I,, contains at most one point. We prove it by contradiction,
assume that N2°_, I, contains ¢, ¢’ such that ¢ # ¢’. Then |c—¢’| > 0, and for n large enough,
I,| < 3]c — ¢/|. By our assumption that ¢ € I,,, but then ¢’ can not be in I,,, which is a

contradiction.

For the existence of ¢ € NS, I,,, we need the following property of R.
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Bounded above, Upper bound, Least upper bound. For a nonempty S C R to be
bounded above if there is M such that x < M for all x € S. In this case we say that M is
an upper bound of S.

Least upper bound. For a nonempty set S which is bounded above, an upper bound N
is called the least upper bound if N < M for all upper bound M of S denoted by L.u.b.S.

Remark. (Ve is for every €, and 36 is there exists 9.)

(1) There are no x € S such that x > l.u.b.S.
(2) For Ve > 0,3x € S such that L.u.b.S —e <z <lu.b.S.

lLu.b.(0,1) = 1,1 u.b.[0,1] = 1, the first case L.u.b.S ¢ S and second case Lu.b.S € S.
It is clear that the least upper bound is unique.(Exercise: prove it.)

AXIOM. (Least upper property of R) Every nonempty subset S of R, if S is bounded
above, then S has the least upper bound.

Remark. The set of all rational numbers Q does not have this property. The set of all
integers Z has this priperty.

Now we can complete the proof of the existence of ¢ € N9 I,,. Let S = {a,}, then b,
is upper bound of S for all n. If we let ¢ be the least upper bound of S , then we have
a, < c < by, for all n, which implies that c € N72,1,,. Q.E.D

0.3 SOME INEQUALITIES
Lemma. Let a > 0, then |b| < a if and only if —a < b < a.

Lemma.

(1) la+b| < |af +[b],
(2) lla] = [b]] <fa -]

proof.
(1) Since —l|a| < a < |a|,—|b] < b < |b|, we have —(|a| + [b]) < a+b < (|a|] + |b]), then
by the Lemma above |a + b| < |a| + [b].
(2) From (1) let b — (b—a), we get |b| < |a| 4+ |a —b|. That means —|a — b| < |a| — |b].
By a — b,b — a we get —|b—al| < |b| — |a|] multiply byb —1 we get |[a—b| > |a|— 0]
Again by the Lemma above, we hvae ||a| — |b|| < |a — b].

0.4 SOME LOGIC STATEMENTS

The following propositions are equirvalent

1) A implies B,

2) A = B,

3) —B implies —A,

4) A is a sufficient cvondition of B,

5) B is a necessary condition of A,

6) B if A(If A is true then B is true.),

7) A only if B.(A will be true only if B is true.)
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The following propositions are equirvalent

) A is equivalent to B,
A& B

A if only if B,

(1
(2)
(3) A
(4) A is a necessary and sufficient condition of B,
(5)
(6) Aiff B.

Mathematical induction. The method of mathematical induction in proving some stat-
ment involving n say P(n) is true for all n from ng(most cases ng = 1) on, consisting of
two steps.

(1) Initial step: show that P(ng) is true.
(2) Induction step: assume that P(ng),--- , P(k) are ture, show that P(k + 1) is true.






