Calculus — Homework 9 (Fall 2025)

- 1. Prove that for all real numbers x and y
 - (a) $|\cos x \cos y| \le |x y|$.
 - (b) $|\sin x \sin y| \le |x y|$.
- 2. Show that

 $\tan x > x$,

for all x in $(0, \frac{\pi}{2})$.

- 3. True or false? Explain your answers.
 - (a) The function $f(x) = x^2$ is an increasing function on $(-\infty, \infty)$.
 - (b) The function $f(x) = x^2$ is a decreasing function on $(-\infty, \infty)$.
 - (c) The function $f(x) = x^2$ is an increasing function on $(0, \infty)$.
 - (d) The function $f(x) = x^3$ is an increasing function on $(-\infty, \infty)$.
- 4. Suppose a function f has derivative

$$f'(x) = x^3(x-1)^2(x+1)(x-2).$$

At what numbers x, if any, does f have a local maximum? A local minimum?

5. Find the critical points, local maximums and local minimums of f.

(a)
$$f(x) = x^3 - 3x + 2$$
.

(c)
$$f(x) = |x^2 - 5|$$
.

(b)
$$f(x) = x + \frac{1}{x}$$
.

(d)
$$f(x) = x - \cos x.$$

6. Find the critical points. Then find and classify all the extreme values.

(a)
$$f(x) = x^2 - 4x + 1$$
, $0 \le x \le 3$.

(b)
$$f(x) = \frac{x^2}{1+x^2}$$
, $-1 \le x \le 2$.

(c)
$$f(x) = \sin 2x - x$$
, $0 \le x \le \pi$.

(d)
$$f(x) = 1 - \sqrt[3]{x - 1}, \quad x \in (-\infty, \infty).$$

(e)
$$f(x) = \begin{cases} x^2 + 2x + 2, & x < 0, \\ x^2 - 2x + 2, & 0 \le x \le 2. \end{cases}$$

- 7. Describe the concavity of the graph and find the points of inflection (if any).
 - (a) $f(x) = x + \frac{1}{x}$.
 - (b) $f(x) = x^3(1-x)$.
 - (c) $f(x) = \sin^2 x$, $0 < x < \pi$.
- 8. Suppose $f \in C^2[0,1]$ such that f(0) = f(1) = 0 and f''(x) < 0 for all $x \in (0,1)$. Prove that f(x) > 0 for all $x \in (0,1)$.
- 9. Let $f \in C^2(a, b)$.
 - (a) Let $x_0 \in (a, b)$ and h > 0 such that $x_0 h, x_0 + h \in (a, b)$. Prove that there exists $\xi \in (x_0 h, x_0 + h)$ such that

$$f(x_0 + h) - 2f(x_0) + f(x_0 - h) = f''(\xi)h^2.$$

(Hint: Consider the function f(x) - q(x), where $q(x) = a(x - x_0)^2 + b(x - x_0) + c$ is the quadratic polynomial satisfying

$$q(x_0) = f(x_0),$$
 $q(x_0 - h) = f(x_0 - h),$ $q(x_0 + h) = f(x_0 + h).$

Apply the mean value theorem to it twice.)

(b) Suppose for any $x_1, x_2 \in (a, b)$ with $x_1 < x_2$, we have

$$f\left(\frac{x_1+x_2}{2}\right) \le \frac{1}{2}(f(x_1)+f(x_2)).$$

Prove that $f''(x) \ge 0$ for all $x \in (a, b)$.

10. Suppose $f \in C^2(a, b)$, $f''(x) \le 0$ for all $x \in (a, b)$, and $c \in (a, b)$. Prove that

$$f(c) + f'(c) \cdot (x - c) \ge f(x)$$

for all $x \in (a, b)$.