Calculus — Homework 7 (Fall 2025)

1. Let f(x) be a polynomial of degree n. Suppose that

$$f(-x) = -f(x), \quad \forall x \in [-1, 1].$$

Prove that

- (a) f(-1000) = -f(1000);
- (b) n is an odd number.

2. True or false? Explain how each of your answers is consistent with the extreme value theorem.

- (a) The function $f(x) = x^2$ attains a maximum value on [-1, 1].
- (b) The function $f(x) = x^2$ attains a minimum value on [-1, 1].
- (c) The function $f(x) = x^2$ attains a maximum value on (-1, 1).
- (d) The function $f(x) = x^2$ attains a minimum value on (-1, 1).
- (e) The function $f(x) = x^2$ is bounded on (-1, 1).

3. Write an equation for the tangent line at (c, f(c)).

(a)
$$f(x) = x^2 - 4x$$
, $c = 3$.

(b)
$$f(x) = \sqrt{x}$$
, $c = 1$.

4. Draw the graph of f; indicate where f is not differentiable, and indicate where f is not continuous.

(a)
$$f(x) = \sqrt{|x|}$$
.

(b)
$$f(x) = |x^2 - 4|$$
.

(c)
$$f(x) = \begin{cases} x^2, & |x| \le 1, \\ 2 - x, & |x| > 1. \end{cases}$$

5. Differentiate the following functions.

(a)
$$f(x) = 1 - x$$
.

(c)
$$f(x) = \frac{3}{x^2}$$
.

(c)
$$f(x) = \frac{3}{x^2}$$
. (e) $f(x) = \frac{x^3}{1-x}$.

(b)
$$f(r) = 11r^5 - 6r^3 + 8$$

(d)
$$f(x) = (x^2 - 1)(x - 3)$$

(b)
$$f(x) = 11x^5 - 6x^3 + 8$$
. (d) $f(x) = (x^2 - 1)(x - 3)$. (f) $f(x) = \left(1 + \frac{1}{x}\right)\left(1 + \frac{1}{x^2}\right)$.

6. Find the point(s) where the tangent line is horizontal.

(a)
$$f(x) = (x-2)(x^2 - x - 11)$$
.

(b)
$$f(x) = x^2 - \frac{16}{x}$$
.

7. Let f_1, \dots, f_n be functions that are differentiable at x. Prove that for any $\alpha_1, \dots, \alpha_n \in \mathbb{R}$,

$$(\alpha_1 f_1 + \dots + \alpha_n f_n)'(x) = \alpha_1 \cdot f_1'(x) + \dots + \alpha_n \cdot f_n'(x).$$

8. Let $f(x) = x + x^2 + \dots + x^n$

(a) Show that
$$f(x) = \frac{x - x^{n+1}}{1 - x}$$
 for all $x \ne 1$.

(b) Find the value of the sum
$$\sum_{j=1}^{n} \frac{j}{2^{j-1}}$$
. (Hint: Consider $f'(x)$.)

(c) Find the value of the infinite sum $\sum_{i=1}^{\infty} \frac{j}{2^{j-1}}$, which is, by definition, the limit $\lim_{n\to\infty} \sum_{i=1}^{n} \frac{j}{2^{j-1}}$.

9. Let f(x) be a polynomial of degree n with zeros

$$a_1 < a_2 < \cdots < a_n$$
.

Let g(x) be a polynomial of degree at most n-1. Suppose that $A_1, \ldots, A_n \in \mathbb{R}$ are numbers such that

$$\frac{g(x)}{f(x)} = \frac{A_1}{x - a_1} + \dots + \frac{A_n}{x - a_n}, \quad \forall x \in \mathbb{R} \setminus \{a_1, \dots, a_n\}.$$

- (a) Prove that $A_j = \frac{g(a_j)}{f'(a_j)}$.
- (b) Assume, in addition, that $A_k A_{k+1} > 0$ for $k = 1, \dots, n-1$. Prove that g(x) is of degree n-1, and it has n-1 distinct real zeros.
- 10. Let f(x) and q(x) be polynomials such that

$$f(x) = (x - a)^2 q(x), \quad \forall x \in \mathbb{R}.$$

Prove that
$$q(a) = \frac{f''(a)}{2!}$$
.