Calculus — Homework 6 (Fall 2025)

- 1. For $x \in \mathbb{R}$, let [x] denote its Gauss symbol, i.e. the largest integer which is less than or equal to x. In the interval $(-\infty, \infty)$, define the following functions:
 - (a) f(x) = x [x],
 - (b) g(x) = x[x],
 - (c) $h(x) = [x] \sin x$.

Find the points of discontinuity of these three functions.

2. Suppose f(x) is a continuous function on [0, 1]. Assume that for any positive integers p, q with p < q, we have

$$f(\frac{p}{q}) = \frac{2p}{q}.$$

Prove that f(x) = 2x for all $x \in [0, 1]$.

3. Evaluate the limits.

(a)
$$\lim_{x \to \pi} \sin(x - \sin x)$$
.

(c)
$$\lim_{x \to 0} \cos \left(\frac{\pi}{\sqrt{19 - 3\sec(2x)}} \right).$$

(b)
$$\lim_{x \to 0} \sin\left(\frac{\pi}{2}\cos(\tan x)\right)$$
.

(d)
$$\lim_{x\to 0^+} \sin\left(\frac{\pi}{2}\cos(\sqrt{x})\right)$$
.

- 4. Use the intermediate value theorem to show that there is a solution of the given equation in the indicated interval.
 - (a) $2x^3 4x^2 + 5x 4 = 0$, [1, 2].
 - (b) $\sin x + 2\cos x x^2 = 0$, $[0, \pi/2]$.
- 5. (Brouwer fixed-point theorem.) Show that if f is continuous on [0,1] and $0 \le f(x) \le 1$ for all x in [0,1], then there exists at least one point c in [0,1] at which f(c) = c. (HINT: Apply the intermediate value theorem to the function g(x) = x f(x).)
- 6. Let f(x) and g(x) be two continuous functions defined in [0, 1]. Suppose that f(0) < g(0) and f(1) > g(1).
 - (a) Prove that there exists $x_0 \in (0, 1)$ such that $f(x_0) = g(x_0)$.
 - (b) Suppose, in addition, that $(f(x))^2 = (g(x))^2$ for any $x \in [0, 1]$. Prove that there exists $x_1 \in (0, 1)$ such that $f(x_1) = g(x_1) = 0$.
- 7. Let f(x) and g(x) be tw continuous functions defined in [0, 1]. Suppose that
 - (i) $f(x) \neq 0$ for all $x \in [0, 1]$,
 - (ii) $(f(x))^2 = (g(x))^2$ for all $x \in [0, 1]$,
 - (iii) $f(\frac{1}{2})g(\frac{1}{2}) < 0$.

Prove that f(x) = -g(x) for all $x \in [0, 1]$.

8. Let f(x) be a real valued function which is continuous in $(-\infty, \infty)$. Suppose that

$$\lim_{n\to\infty}\frac{f(n\pi+\frac{\pi}{3})}{\sin(n\pi+\frac{\pi}{3})}=1.$$

Prove that f(x) has infinitely many zeros in the half line $(0, +\infty)$.