Calculus — Homework 3 (Fall 2025)

- 1. Let $(a_n)_{n=1}^{\infty}$ be a bounded increasing sequence, and $\alpha = \sup\{a_1, a_2, a_3, \cdots\}$. Prove that $\lim_{n \to \infty} a_n = \alpha$.
- 2. Let $(a_n)_{n=1}^{\infty}$ be a bounded sequence, and $A_n = \{a_n, a_{n+1}, \dots\}$.
 - (a) Prove that $\overline{\lim_{n\to\infty}} a_n = \inf\{\sup A_n \mid n\in\mathbb{N}\}\$ and $\underline{\lim_{n\to\infty}} a_n = \sup\{\inf A_n \mid n\in\mathbb{N}\}.$
 - (b) Let $\alpha = \overline{\lim_{n \to \infty}} a_n$. Prove that for each $\epsilon > 0$ there exists N_{ϵ} such that $a_n < \alpha + \epsilon$ for any $n \ge N_{\epsilon}$.
 - (c) Prove that if $(a_{\hat{n}_m})_{m=1}^{\infty}$ be a convergent subsequence of $(a_n)_{n=1}^{\infty}$, then $\lim_{m\to\infty} a_{\hat{n}_m} \leq \alpha$.
 - (d) Prove that for each $\epsilon > 0$ there exists n_{ϵ} such that $a_{n_{\epsilon}} > \alpha \epsilon$.
 - (e) Prove that there exists a subsequence $(a_{n_k})_{k=1}^{\infty}$ of $(a_n)_{n=1}^{\infty}$ such that $\lim_{k\to\infty} a_{n_k} = \alpha$.
 - (f) Prove that there exists a subsequence $(a_{\tilde{n}_l})_{l=1}^{\infty}$ of $(a_n)_{n=1}^{\infty}$ such that $\lim_{l\to\infty} a_{\tilde{n}_l} = \underline{\lim}_{n\to\infty} a_n$.
 - (g) Prove that if $(a_{\hat{n}_m})_{m=1}^{\infty}$ be a convergent subsequence of $(a_n)_{n=1}^{\infty}$, then $\lim_{n\to\infty} a_n \leq \lim_{m\to\infty} a_{\hat{n}_m} \leq \overline{\lim_{n\to\infty}} a_n$.
- 3. Let $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ be bounded sequences.
 - (a) Prove that $\overline{\lim}_{n\to\infty}(a_n+b_n) \le \overline{\lim}_{n\to\infty}a_n + \overline{\lim}_{n\to\infty}b_n$.
 - (b) Prove that there exist bounded sequences $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ such that $\overline{\lim}_{n\to\infty}(a_n+b_n)\neq \overline{\lim}_{n\to\infty}a_n+\overline{\lim}_{n\to\infty}b_n$.
- 4. Let $(a_n)_{n=1}^{\infty}$ be a bounded sequence, and $A_n = \{a_n, a_{n+1}, \dots\}$.
 - (a) Suppose that $(a_n)_{n=1}^{\infty}$ is convergent and $\lim_{n\to\infty} a_n = \alpha$. Prove that for each $\epsilon > 0$, there exists N_{ϵ} such that

$$\alpha - \epsilon < \sup A_n < \alpha + \epsilon$$

for any $n \ge N_{\epsilon}$.

- (b) Suppose that $(a_n)_{n=1}^{\infty}$ is convergent and $\lim_{n\to\infty} a_n = \alpha$. Prove that $\overline{\lim}_{n\to\infty} a_n = \underline{\lim}_{n\to\infty} a_n = \alpha$.
- (c) Suppose that $\overline{\lim}_{n\to\infty} a_n = \underline{\lim}_{n\to\infty} a_n = \alpha$. Prove that $(a_n)_{n=1}^{\infty}$ is convergent and $\lim_{n\to\infty} a_n = \alpha$.
- 5. Let a, b be real numbers such that a < b. Define a sequence $(x_n)_{n=0}^{\infty}$ by

$$\begin{cases} x_{n+1} = \frac{x_n + x_{n-1}}{2}, & \forall n \ge 1, \\ x_0 = a, & x_1 = b. \end{cases}$$

Prove that $(x_n)_{n=0}^{\infty}$ is convergent.

- 6. Suppose that $(a_n)_{n=1}^{\infty}$ is a sequence with the properties:
 - (i) There exist M, N > 0 such that $a_n \le -M$ for all $n \ge N$.
 - (ii) The sequence $(a_n^2)_{n=1}^{\infty}$ is a Cauchy sequence.

Prove that the sequence $(a_n)_{n=1}^{\infty}$ is also a Cauchy sequence. (Hint: $a-b=\frac{a^2-b^2}{a+b}$.)

7. Suppose that $(a_n)_{n=1}^{\infty}$ is a sequence such that $\lim_{n\to\infty} a_n = \alpha$. Define the average sequence by

$$\sigma_n = \frac{a_1 + \dots + a_n}{n}.$$

(a) Prove that for any $\epsilon > 0$, there exists N_{ϵ} such that for all $n \geq N_{\epsilon}$, the following inequality holds:

$$\frac{a_1+\cdots+a_{N_\epsilon}}{n}+\frac{(n-N_\epsilon)(\alpha-\epsilon)}{n}<\sigma_n<\frac{a_1+\cdots+a_{N_\epsilon}}{n}+\frac{(n-N_\epsilon)(\alpha+\epsilon)}{n}.$$

- (b) Prove that the sequence $(\sigma_n)_{n=1}^{\infty}$ is also convergent, and $\lim_{n\to\infty} \sigma_n = \alpha$.
- (c) Prove that there exists a divergent sequence $(a_n)_{n=1}^{\infty}$ whose associated average sequence $(\sigma_n)_{n=1}^{\infty}$ is convergent.