Calculus — Homework 2 (Fall 2025)

1. Prove thatif (@, = ), , is a constant sequence, then lim a, = c.
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2. Prove that
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3. Prove that the sequence (M) converges.
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4. Prove that the sequence (#) diverges.
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5. State whether the sequence converges and, if it does, find the limit.

(a) n = 2. (C) a = 22/n. (e) ay = ﬂ
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6. Prove that a sequence converges to L if and only if every subsequence of it converges to L.
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7. Prove that the sequence (cos (%T)) diverges.
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(a) Prove that the sequence (x,),” , converges.
(b) Let ¢ = lim x,. Prove that
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(c) Prove that e is an irrational number. (Hint: x, = p_,: for some integer p,,.)
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9. Let (ay),. | be a decreasing sequence of positive real numbers. Define
Sp=ap+ -+ ay,
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(a) Prove thatif (s,);7, is convergent, then so is (¢,,)
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(b) Prove that if (z,),-_, is convergent, then so is (s,); ;.



