Calculus — Homework 1 (Fall 2025)

- 1. Let \mathbb{N} denote the set of positive integers. Suppose $f: \mathbb{N} \to \mathbb{N}$ is a strictly increasing map, i.e.,
 - (i) $f(n) \in \mathbb{N}$ for all $n \in \mathbb{N}$;
 - (ii) if m < n, then f(m) < f(n).

Prove that $f(n) \ge n$ for all $n \in \mathbb{N}$. (Hint: Use mathematical induction.)

- 2. Let $(a_n)_{n=1}^{\infty}$ be the sequence satisfying the given rules. Find an explicit formula for a_n that does not involve an recursive relation. Prove your answer.
 - (a) $a_1 = 1;$ $a_{n+1} = \frac{1}{2}a_n + 1.$ (b) $a_1 = 1;$ $a_{n+1} = \frac{n}{n+1}a_n.$
- (c) $a_1 = 1;$ $a_{n+1} = a_n + \frac{1}{n(n+1)}.$ (d) $a_1 = 1;$ $a_{n+1} = a_n + \dots + a_1.$

- 3. Let $(a_n)_{n=1}^{\infty}$ be a sequence, and $L \in \mathbb{R}$. Prove that $\lim_{n \to \infty} a_n = L$ if and only if $\lim_{n \to \infty} |a_n L| = 0$.
- 4. Let $(a_n)_{n=1}^{\infty}$ be a sequence, and $L \in \mathbb{R}$.
 - (a) Prove that if $\lim_{n\to\infty} a_n = L$, then $\lim_{n\to\infty} |a_n| = |L|$.
 - (b) Is there a divergent sequence $(b_n)_{n=1}^{\infty}$ such that $\lim_{n\to\infty} |b_n| = L$? Prove your answer. (Hint: Consider two cases: L = 0 and $L \neq 0$.)
- 5. Let $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ be convergent sequences, and $\gamma \in \mathbb{R}$. Prove that
 - (a) $\lim_{n\to\infty} (\gamma \cdot a_n) = \gamma \cdot \lim_{n\to\infty} a_n$;
 - (b) $\lim_{n\to\infty} (a_n + b_n) = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n$;
 - (c) if $\lim_{n \to \infty} b_n \neq 0$, then $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$.
- 6. Compute $\lim_{n \to \infty} a_n$.
 - (a) $a_n = \frac{(-1)^n}{n}$.
- (c) $a_n = \frac{2^n}{4^n + 1}$. (d) $a_n = \frac{1}{2n} \frac{1}{2n + 3}$. (e) $a_n = \frac{(n+1)(n+2)}{(n+3)(n+4)}$. (f) $a_n = \sqrt{n^2 + n} \sqrt{n^2 n}$.
- (b) $a_n = \frac{n + (-1)^n}{n}$.