Calculus — Homework 9 (Spring 2025)

1. Let $f(x, y) = x^3 - xy$. Set $\vec{a} = (0, 1)$ and $\vec{b} = (1, 3)$. Find a point \vec{c} on the line segment connecting \vec{a} and \vec{b} for which

$$f(\vec{b}) - f(\vec{a}) = \nabla f(\vec{c}) \cdot (\vec{b} - \vec{a}).$$

- 2. Let f be a smooth function on \mathbb{R}^3 . Show that if $f(\vec{a}) = f(\vec{b})$, then there exists a point \vec{c} between \vec{a} and \vec{b} for which $\nabla f(\vec{c}) \perp (\vec{b} \vec{a})$.
- 3. Find the rate of change of f with respect to t along the curve $\vec{\gamma}$.
 - (a) $f(x,y) = x^2 y$, $\vec{\gamma}(t) = e^t \vec{i} + e^{-t} \vec{j}$. (b) $f(x,y) = \arctan(y^2 - x^2)$, $\vec{\gamma}(t) = \sin t \vec{i} + \cos t \vec{j}$. (c) $f(x,y,z) = \ln(x^2 + y^2 + z^2)$, $\vec{\gamma}(t) = \sin t \vec{i} + \cos t \vec{j} + e^{2t} \vec{k}$. (d) $f(x,y,z) = y \sin(x+z)$, $\vec{\gamma}(t) = 2t \vec{i} + \cos t \vec{j} + t^3 \vec{k}$.
- 4. Find $\partial u/\partial s$ and $\partial u/\partial t$.
 - (a) $u = x^2 xy;$ $x = s \cos t, y = t \sin s.$
 - (b) $u = x^2 \tan y$; $x = s^2 t$, $y = s + t^2$.
 - (c) $u = z^2 \sec(xy);$ $x = 2st, y = s t^2, z = s^2 t.$
 - (d) $u = xe^{yz^2}$; $x = \ln(st), y = t^3, z = s^2 + t^2$.
- 5. Let

 $x = r \cos \theta$ and $y = r \sin \theta$.

- Suppose u = u(x, y) is a smooth function.
- (a) Show that

$$\nabla u = \frac{\partial u}{\partial r}\vec{e}_r + \frac{1}{r}\frac{\partial u}{\partial \theta}\vec{e}_\theta$$

where $r \neq 0$,

$$\vec{e}_r = \cos\theta \, \vec{i} + \sin\theta \, \vec{j}$$
 and $\vec{e}_\theta = -\sin\theta \, \vec{i} + \cos\theta \, \vec{j}$.

(b) Show that

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} + \frac{1}{r} \frac{\partial u}{\partial r}$$

- 6. Find a normal vector and a tangent vector at the point \vec{p} . Write an equation for the tangent line and an equation for the normal line.
 - (a) $x^2 + xy + y^2 = 3;$ $\vec{p} = (-1, -1).$ (b) $(y - x)^2 = 2x;$ $\vec{p} = (2, 4).$ (c) $x^5 + y^5 = 2x^3;$ $\vec{p} = (1, 1).$
- 7. Find an equation for the tangent plane at the point \vec{p} and scalar parametric equations for the normal line.
 - (a) $z = (x^2 + y^2)^2; \quad \vec{p} = (1, 1, 4).$

(b)
$$xy^2 + 2z^2 = 12; \quad \vec{p} = (1, 2, 2)$$

- (c) $z = \sin x + \sin y + \sin(x+y); \quad \vec{p} = (0,0,0).$
- 8. Find the point(s) of the surface at which the tangent plane is horizontal.
 - (a) $z = 4x + 2y x^2 + xy y^2$.
 - (b) z = xy.