Calculus — Homework 2 (Spring 2025)

1. State whether the sequence converges and, if it does, find the limit.

(a)
$$a_n = 2^{2/n}$$
.

(d)
$$a_n = \frac{4^{100n}}{n!}$$
.

(g)
$$a_n = \left(\frac{n-1}{n}\right)^n$$
.

(b)
$$a_n = \left(\frac{2}{n}\right)^n$$
.

(e)
$$a_n = \int_{-\pi}^{0} e^{2x} dx$$

(d)
$$a_n = \frac{4^{100n}}{n!}$$
.
(e) $a_n = \int_{-n}^0 e^{2x} dx$.
(g) $a_n = \left(\frac{n-1}{n}\right)^n$.
(h) $a_n = \int_0^{1/n} \cos e^x dx$.

(c)
$$a_n = \frac{\ln(n+1)}{n}$$
.

(f)
$$a_n = n^2 \sin \frac{\pi}{n}$$
.

(i)
$$a_n = \left(\frac{1}{2} + \frac{3}{n}\right)^{3n}$$
.

- 2. Show that if f and g grow at the same rate, then f = O(g) and g = O(f).
- 3. Prove the following.

(a)
$$e^x = o(e^{e^x})$$
.

(c)
$$3x^5 - 100x^2 + 5x + 1 = O(x^5)$$
.

(b)
$$\ln(\ln x) = o(\ln x)$$
.

(d)
$$2^x = O(2^{x^2})$$
.

4. Evaluate the integrals.

(a)
$$\int_0^\infty \frac{dx}{x^2 + 1}.$$

(c)
$$\int_{-1}^{\infty} \frac{dx}{x^2 + 5x + 6}$$
.

(b)
$$\int_{-\infty}^{0} xe^x dx.$$

(d)
$$\int_{-\infty}^{\infty} \frac{1}{e^x + e^{-x}} dx.$$

5. Let f be a continuous function on $(-\infty, \infty)$. Assume that both $\int_0^\infty f(x) dx$ and $\int_{-\infty}^0 f(x) dx$ converge. Show that, for any real number c, the integrals $\int_{c}^{\infty} f(x) dx$ and $\int_{-\infty}^{c} f(x) dx$ converge, and

$$\int_{-\infty}^{0} f(x) \, dx + \int_{0}^{\infty} f(x) \, dx = \int_{-\infty}^{c} f(x) \, dx + \int_{c}^{\infty} f(x) \, dx.$$

- 6. This problem shows that $\int_{-\infty}^{\infty} f(x) dx$ and $\lim_{b \to \infty} \int_{-b}^{b} f(x) dx$ are different.
 - (a) Show that $\int_0^\infty \frac{2x}{x^2+1} dx$ diverges and hence that $\int_{-\infty}^\infty \frac{2x}{x^2+1} dx$ diverges.
 - (b) Show that

$$\lim_{b \to \infty} \int_{-b}^{b} \frac{2x}{x^2 + 1} dx = 0.$$