Calculus (I) — Homework 4 (Fall 2024)

1. Write an equation for the tangent line at (c, f(c)).

(a)
$$f(x) = x^2 - 4x$$
, $c = 3$.
(b) $f(x) = \sqrt{x}$, $c = 1$.

2. Draw the graph of f; indicate where f is not differentiable, and indicate where f is not continuous.

(a)
$$f(x) = \sqrt{|x|}$$
.
(b) $f(x) = |x^2 - 4|$.
(c) $f(x) = \begin{cases} x^2, & |x| \le 1, \\ 2 - x, & |x| > 1. \end{cases}$

- 3. Differentiate the following functions.
 - (a) f(x) = 1 x. (b) $f(x) = 11x^5 - 6x^3 + 8$. (c) $f(x) = \frac{3}{x^2}$. (d) $f(x) = (x^2 - 1)(x - 3)$. (e) $f(x) = \frac{x^3}{1 - x}$. (f) $f(x) = (1 + \frac{1}{x})(1 + \frac{1}{x^2})$. (g) $f(x) = (1 - 2x)^{-1}$. (h) $f(x) = (1 + 2x)^5$. (i) $f(x) = (x - \frac{1}{x})^4$.
- 4. Find the point(s) where the tangent line is horizontal.

(a)
$$f(x) = (x-2)(x^2 - x - 11).$$
 (b) $f(x) = x^2 - \frac{16}{x}$

5. Find dy/dx, d^2y/dx^2 and d^3y/dx^3 .

(a)
$$y = \frac{1}{3}x^3 + \frac{1}{2}x^2 + x + 1.$$

(b) $y = (1 + 5x)^2.$
(c) $y = x^3 - \frac{1}{x^3}.$
(d) $y = \frac{x^4 + 2}{x}.$

6. Let p be an arbitrary polynomial

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, \qquad a_n \neq 0.$$

- (a) Find $(d^{n-1}/dx^{n-1})(p(x))$ and $(d^n/dx^n)(p(x))$.
- (b) What is $(d^k/dx^k)(p(x))$ for k > n?
- 7. Let f, g be arbitrary differentiable functions.
 - (a) Find a formula for $(f \cdot g)''(x)$.
 - (b) Assume $g(x) \neq 0$. Find a formula for (f/g)''(x).
- 8. True or false? Explain your answers.
 - (a) The derivative of f at c is the limit $f'(c) = \lim_{x \to c} \frac{f(x) f(c)}{x c}$.
 - (b) If a function f is differentiable at c, then f is continuous at c.
 - (c) If a function f is continuous at c, then f is differentiable at c.