Calculus (I) — Homework 3 (Fall 2024)

- 1. Determine whether or not the function is continuous at the indicated point. Explain your answers.
 - (a) $f(x) = x^3 5x + 1$, x = 2. (b) $f(x) = x \sin x + \cos^2 x$, x = 1. (c) $f(x) = \tan x$, $x = \pi/2$. (d) $f(x) = \sqrt{(x-1)^2 + 5}$, x = 1. (e) $f(x) = |4 - x^2|$, x = 2. (f) $f(x) = \begin{cases} x^2 + 5, & x < 2, \\ x = \pi/2 \end{cases}$ (g) $f(x) = \begin{cases} x^2 + 5, & x < 2, \\ x^3, & x \ge 2, \end{cases}$ (h) $f(x) = \begin{cases} \frac{|x-1|}{x-1}, & x \ne 1, \\ 0, & x = 1, \end{cases}$ (i) $f(x) = \begin{cases} -x^2, & x < 0, \\ 0, & x = 0, \\ 1/x^2, & x > 0, \end{cases}$
- 2. Sketch the graph and classify the discontinuities (if any) as being removable or essential.
 - (a) $f(x) = |x^2 1|$. (b) $f(x) = \tan(x+1)$. (c) $f(x) = \begin{cases} \frac{x^2 - 4}{x - 2}, & x \neq 2, \\ 0, & x = 2. \end{cases}$ (d) $f(x) = \begin{cases} \frac{x + 2}{x^2 - x - 6}, & x \neq -2, 3, \\ -\frac{1}{5}, & x = -2, 3. \end{cases}$ (e) $f(x) = \begin{cases} \sin x \cos x, & x < 0, \\ 0, & x = 0, \\ 1/x^2 & x > 0. \end{cases}$
- 3. Evaluate the limits.

(a)
$$\lim_{x \to \pi} \sin(x - \sin x).$$

(b)
$$\lim_{x \to 0} \sin\left(\frac{\pi}{2}\cos(\tan x)\right).$$

(c)
$$\lim_{x \to 0} \cos\left(\frac{\pi}{\sqrt{19 - 3\sec(2x)}}\right)$$

(d)
$$\lim_{x \to 0^+} \sin\left(\frac{\pi}{2}\cos(\sqrt{x})\right).$$

- 4. Use the intermediate value theorem to show that there is a solution of the given equation in the indicated interval.
 - (a) $2x^3 4x^2 + 5x 4 = 0$, [1, 2].
 - (b) $\sin x + 2\cos x x^2 = 0$, $[0, \pi/2]$.
- 5. (Brouwer fixed-point theorem.) Show that if f is continuous on [0, 1] and $0 \le f(x) \le 1$ for all x in [0, 1], then there exists at least one point c in [0, 1] at which f(c) = c. (HINT: Apply the intermediate value theorem to the function g(x) = x f(x).)
- 6. True or false? Explain how your answers are consistent with the extreme value theorem
 - (a) The function $f(x) = x^2$ attains a maximum value on [-1, 1].
 - (b) The function $f(x) = x^2$ attains a minimum value on [-1, 1].
 - (c) The function $f(x) = x^2$ attains a maximum value on (-1, 1).
 - (d) The function $f(x) = x^2$ attains a minimum value on (-1, 1).
 - (e) The function $f(x) = x^2$ is bounded on (-1, 1).