Calculus (I) — Homework 12 (Fall 2024)

1. Calculate.

(a)
$$\int \frac{1}{x^2 + 7x + 6} dx.$$

(b) $\int \frac{x^5}{(x - 2)^2} dx.$
(c) $\int \frac{1}{x^2 - 6x + 13} dx.$
(d) $\int \frac{x}{x^2 - 6x + 13} dx.$
(e) $\int \frac{1}{(x^2 - 2x + 2)^2} dx.$
(f) $\int \frac{x}{(x^2 - 2x + 2)^2} dx.$
(g) $\int \frac{x}{x^4 - 1} dx.$
(h) $\int \frac{x^5 + x^2}{x^4 - 1} dx.$
(i) $\int \frac{x^4}{x^3 + x^2 - 2x} dx.$
(j) $\int \frac{1}{(x - 1)(x^2 + 1)^2} dx.$

- 2. Sketch the region bounded by the curves and calculate the area of the region.
 - (a) $4x = 4y y^2$, 4x y = 0. (b) $x = y^2$, $x = 12 - 2y^2$.
- 3. Find the length of the following curves.

(a)
$$y = \frac{x^3}{12} + \frac{1}{x}$$
, $1 \le x \le 4$.
(b) $x = 2y^{3/2}$, $0 \le y \le 1$.

- 4. Find the area of the surface generate by revolving the curve $y = 2\sqrt{x}$, $1 \le x \le 2$, about the x-axis.
- 5. Sketch the region Ω bounded by the curves and find the volume of the solid generated by revolving this region about the *x*-axis.
 - (a) y = x, y = 0, x = 1. (b) $y = \cos x$, y = x + 1, $x = \frac{1}{2}\pi$.
- 6. Sketch the region Ω bounded by the curves and find the volume of the solid generated by revolving this region about the *y*-axis.
 - (a) y = x, y = 0, x = 1. (b) $y = x^2$, $y = x^{1/3}$.
- 7. Determine whether the functions satisfy the differential equation.

(a)
$$y' + xy = x$$
; $y_1(x) = e^{-x^2/2}$, $y_2(x) = 1 + e^{-x^2/2}$.

- (b) y'' + 4y = 0; $y_1(x) = 2\sin 2x$, $y_2(x) = 2\cos x$, $y_3(x) = \sinh 2x$.
- 8. Find the function f(x) which satisfies the equations

$$f'(x) = 2f(x), \qquad f(1) = e^2.$$

Find approximations of the values f(10), f(20) and f(30).

9. Solve the differential equation.

(a)
$$2\sqrt{xy} \frac{dy}{dx} = 1$$
, $x, y > 0$.
(b) $\frac{dy}{dx} = e^{x-y}$.
(c) $y^2 \frac{dy}{dx} = 3x^2y^3 - 6x^2$.