Calculus — Homework 9 (Spring 2024)

- 1. Find a normal vector and a tangent vector at the point \vec{p} . Write an equation for the tangent line and an equation for the normal line.
 - (a) $x^2 + xy + y^2 = 3$; $\vec{p} = (-1, -1)$.
 - (b) $(y-x)^2 = 2x$; $\vec{p} = (2,4)$.
 - (c) $x^5 + y^5 = 2x^3$; $\vec{p} = (1, 1)$.
- 2. Find an equation for the tangent plane at the point \vec{p} and scalar parametric equations for the normal line.
 - (a) $z = (x^2 + y^2)^2$; $\vec{p} = (1, 1, 4)$.
 - (b) $xy^2 + 2z^2 = 12; \quad \vec{p} = (1, 2, 2).$
 - (c) $z = \sin x + \sin y + \sin(x + y); \quad \vec{p} = (0, 0, 0).$
- 3. Find the point(s) of the surface at which the tangent plane is horizontal.
 - (a) $z = 4x + 2y x^2 + xy y^2$.
 - (b) z = xy.
- 4. Find the local extreme values.
 - (a) $f(x,y) = x^2 + xy + y^2 6x + 2$.
 - (b) $(f(x,y) = x \sin y.$
 - (c) $(x-3)\ln(xy)$.
- 5. Find the absolute extreme values taken on by f on the set indicated.
 - (a) $f(x,y) = 2x^2 + y^2 4x 2y + 2;$ $0 \le x \le 2, 0 \le y \le 2x.$
 - (b) $f(x,y) = (x-3)^2 + y^2$; $0 \le x \le 4, x^2 \le y \le 4x$.
 - (c) $f(x,y) = (x-1)^2 + (y-1)^2$; $x^2 + y^2 \le 4$.