## Calculus - Homework 7 (Spring 2024)

1. Find the length of the curve.
(a) $\vec{\gamma}(t)=t \vec{\imath}+\frac{2}{3} t^{3 / 2} \vec{\jmath}, \quad$ from $t=0$ to $t=8$.
(b) $\vec{\gamma}(t)=e^{t}(\cos t \vec{\imath}+\sin t \vec{\jmath}), \quad$ from $t=0$ to $t=\pi$.
(c) $\vec{\gamma}(t)=t \vec{\imath}+\ln (\sec t) \vec{\jmath}+3 \vec{k}, \quad$ from $t=0$ to $t=\frac{\pi}{4}$.
(d) $\vec{\gamma}(t)=(t \sin t+\cos t) \vec{\imath}+(\sin t-t \cos t) \vec{\jmath}+\frac{1}{2} \sqrt{3} t^{2} \vec{k}, \quad$ from $t=0$ to $t=2 \pi$.
2. Let

$$
\vec{\gamma}(t)=3 \cos t \vec{\imath}+3 \sin t \vec{\jmath}+4 t \vec{k}, \quad t \geq 0
$$

(a) Let

$$
s(t)=\int_{0}^{t}\left\|\vec{\gamma}^{\prime}(u)\right\| d u
$$

Show that $s$ is a one-to-one function, and find its inverse function $\tau(s)$.
(b) Let

$$
\vec{R}(s)=\vec{\gamma}(\tau(s))
$$

Show that

$$
\left\|\frac{d \vec{R}}{d s}\right\|=1
$$

(The parametrization $s$ is called the parametrization by arc length.)
(c) Find the length of the curve

$$
\vec{R}(s), \quad 0 \leq s \leq L
$$

3. Calculate the first order and second order partial derivatives.
(a) $f(x, y)=3 x^{2}-x y+y$.
(c) $f(x, y, z)=z \sin (x-y)$.
(b) $f(x, y)=x^{2} e^{-y}$.
(d) $f(x, y, z)=z^{x y^{2}}$.
4. Calculate.
(a) Find $f_{x}(0, e), f_{y}(0, e), f_{x y}(0, e), f_{x x x}(0, e)$ and $f_{x y x}(0, e)$ given that $f(x, y)=e^{x} \ln y$.
(b) Find $f_{x}\left(0, \frac{1}{4} \pi\right), f_{y}\left(0, \frac{1}{4} \pi\right), f_{y y}\left(0, \frac{1}{4} \pi\right)$ and $f_{x y x y}\left(0, \frac{1}{4} \pi\right)$ given that $f(x, y)=e^{-x} \sin (x+2 y)$.
(c) Find $f_{x}(1,2), f_{y}(1,2)$ and $f_{x x}(1,2)$ given that $f(x, y)=\frac{x}{x+y^{2}}$.
5. Show that the functions $u$ and $v$ satisfy the Cauchy-Riemann equations

$$
u_{x}(x, y)=v_{y}(x, y) \quad \text { and } \quad u_{y}(x, y)=-v_{x}(x, y) .
$$

These equations are fundamentally important in the study of functions of a complex variable.
(a) $u(x, y)=x^{2}-y^{2} ; \quad v(x, y)=2 x y$. (Also compute $(x+y \sqrt{-1})^{2}$.)
(b) $u(x, y)=e^{x} \cos y ; \quad v(x, y)=e^{x} \sin y$.
(c) $u(x, y)=\frac{1}{2} \ln \left(x^{2}+y^{2}\right) ; \quad v(x, y)=\arctan \frac{y}{x}$.
(d) $u(x, y)=\frac{x}{x^{2}+y^{2}} ; \quad v(x, y)=\frac{-y}{x^{2}+y^{2}} . \quad$ (Also compute $\frac{1}{(x+y \sqrt{-1})}$.)
6. Let $g$ be a twice differentiable function of one variable and set

$$
f(x, y)=g(x+y)+g(x-y)
$$

Show that

$$
\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial^{2} f}{\partial y^{2}}
$$

7. Let $f$ be a smooth function of two variables. Show that

$$
\frac{\partial^{3} f}{\partial x^{2} \partial y}=\frac{\partial^{3} f}{\partial x \partial y \partial x}=\frac{\partial^{3} f}{\partial y \partial x^{2}}
$$

8. Set

$$
f(x, y)= \begin{cases}\frac{x y\left(y^{2}-x^{2}\right)}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

(a) Find the second order partial derivatives of $f$.
(b) Show that

$$
\frac{\partial^{2} f}{\partial x \partial y}(0,0) \neq \frac{\partial^{2} f}{\partial y \partial x}(0,0)
$$

