Calculus — Homework 7 (Spring 2024)

1. Find the length of the curve.

- (a) $\vec{\gamma}(t) = t \, \vec{\imath} + \frac{2}{3} t^{3/2} \, \vec{\jmath}$, from t = 0 to t = 8.
- (b) $\vec{\gamma}(t) = e^t (\cos t \vec{\imath} + \sin t \vec{\jmath})$, from t = 0 to $t = \pi$.
- (c) $\vec{\gamma}(t) = t \vec{\imath} + \ln(\sec t) \vec{\jmath} + 3 \vec{k}$, from t = 0 to $t = \frac{\pi}{4}$.
- (d) $\vec{\gamma}(t) = (t \sin t + \cos t) \vec{\imath} + (\sin t t \cos t) \vec{\jmath} + \frac{1}{2}\sqrt{3} t^2 \vec{k}$, from t = 0 to $t = 2\pi$.

 $2. \ Let$

$$\vec{\gamma}(t) = 3\cos t \, \vec{i} + 3\sin t \, \vec{j} + 4t \, \vec{k}, \qquad t \ge 0.$$

(a) Let

$$s(t) = \int_0^t \left\| \vec{\gamma}'(u) \right\| du.$$

Show that s is a one-to-one function, and find its inverse function $\tau(s)$.

(b) Let

$$\vec{R}(s) = \vec{\gamma}(\tau(s)).$$

Show that

$$\left\|\frac{d\vec{R}}{ds}\right\| = 1$$

(The parametrization s is called the **parametrization by arc length**.)

(c) Find the length of the curve

$$\vec{R}(s), \qquad 0 \le s \le L$$

- 3. Calculate the first order and second order partial derivatives.
 - (a) $f(x,y) = 3x^2 xy + y.$ (b) $f(x,y) = x^2 e^{-y}.$ (c) $f(x,y,z) = z \sin(x-y).$ (d) $f(x,y,z) = z^{xy^2}.$
- 4. Calculate.
 - (a) Find $f_x(0,e)$, $f_y(0,e)$, $f_{xy}(0,e)$, $f_{xxx}(0,e)$ and $f_{xyx}(0,e)$ given that $f(x,y) = e^x \ln y$.
 - (b) Find $f_x(0, \frac{1}{4}\pi)$, $f_y(0, \frac{1}{4}\pi)$, $f_{yy}(0, \frac{1}{4}\pi)$ and $f_{xyxy}(0, \frac{1}{4}\pi)$ given that $f(x, y) = e^{-x} \sin(x + 2y)$.
 - (c) Find $f_x(1,2)$, $f_y(1,2)$ and $f_{xx}(1,2)$ given that $f(x,y) = \frac{x}{x+y^2}$.
- 5. Show that the functions u and v satisfy the Cauchy–Riemann equations

$$u_x(x,y) = v_y(x,y)$$
 and $u_y(x,y) = -v_x(x,y).$

These equations are fundamentally important in the study of functions of a complex variable.

- (a) $u(x,y) = x^2 y^2;$ v(x,y) = 2xy. (Also compute $(x + y\sqrt{-1})^2.$) (b) $u(x,y) = e^x \cos y;$ $v(x,y) = e^x \sin y.$ (c) $u(x,y) = \frac{1}{2} \ln(x^2 + y^2);$ $v(x,y) = \arctan \frac{y}{x}.$ (d) $u(x,y) = \frac{x}{x^2 + y^2};$ $v(x,y) = \frac{-y}{x^2 + y^2}.$ (Also compute $\frac{1}{(x + y\sqrt{-1})}.$)
- 6. Let g be a twice differentiable function of one variable and set

$$f(x,y) = g(x+y) + g(x-y).$$

Show that

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial y^2}$$

7. Let f be a smooth function of two variables. Show that

$$\frac{\partial^3 f}{\partial x^2 \partial y} = \frac{\partial^3 f}{\partial x \partial y \partial x} = \frac{\partial^3 f}{\partial y \partial x^2}.$$

8. Set

$$f(x,y) = \begin{cases} \frac{xy(y^2 - x^2)}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

- (a) Find the second order partial derivatives of f.
- (b) Show that

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) \neq \frac{\partial^2 f}{\partial y \partial x}(0,0).$$