Calculus — Homework 6 (Spring 2024)

1. Simplify.

(a)
$$(3\vec{a} \cdot \vec{b}) - (\vec{a} \cdot 2\vec{b})$$
.

(c)
$$(\vec{a} - \vec{b}) \cdot \vec{c} + \vec{b} \cdot (\vec{c} + \vec{a})$$
.

(b)
$$\vec{a} \cdot (\vec{a} - \vec{b}) + \vec{b} \cdot (\vec{b} + \vec{a})$$
.

(d)
$$\vec{a} \cdot (\vec{a} + 2\vec{c}) + (2\vec{b} - \vec{a}) \cdot (\vec{a} + 2\vec{c}) - 2\vec{b} \cdot (\vec{a} + 2\vec{c})$$
.

- 2. Consider vectors in \mathbb{R}^3 .
 - (a) Find $\vec{a}, \vec{b}, \vec{c} \neq \vec{0}$ such that $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$ but $\vec{b} \neq \vec{c}$.
 - (b) Show that if $\vec{u} \cdot \vec{b} = \vec{u} \cdot \vec{c}$ for all unit vectors \vec{u} (i.e. $||\vec{u}|| = 1$), then $\vec{b} = \vec{c}$.
- 3. Let $\vec{a}, \vec{b} \in \mathbb{R}^3$.
 - (a) Show that for all vectors \vec{a} and \vec{b}

$$4(\vec{a} \cdot \vec{b}) = \|\vec{a} + \vec{b}\|^2 - \|\vec{a} - \vec{b}\|^2.$$

- (b) Show that $\vec{a} \perp \vec{b}$ iff $||\vec{a} + \vec{b}|| = ||\vec{a} \vec{b}||$.
- (c) Show that, if \vec{a} and \vec{b} are nonzero vectors such that

$$(\vec{a} + \vec{b}) \perp (\vec{a} - \vec{b})$$
 and $||\vec{a} + \vec{b}|| = ||\vec{a} - \vec{b}||$,

then the parallelogram generated by \vec{a} and \vec{b} is a square.

4. Show that

$$|\vec{a} \cdot \vec{b}| \le ||\vec{a}|| ||\vec{b}||,$$

and the equality holds iff \vec{a} and \vec{b} are parallel, i.e. there exists λ such that $\vec{a} = \lambda \vec{b}$ or $\vec{b} = \lambda \vec{a}$.

5. Prove the parallelogram law:

$$\|\vec{a} + \vec{b}\|^2 + \|\vec{a} - \vec{b}\|^2 = 2\|\vec{a}\|^2 + 2\|\vec{b}\|^2.$$

- 6. Calculate the $\vec{f}'(t)$ and $\vec{f}''(t)$.
 - (a) $\vec{f}(t) = (1+2t)\vec{\imath} + (3-t)\vec{\jmath} + \cos t\vec{k}$.
 - (b) $\vec{f}(t) = e^t(\vec{\imath} \vec{\jmath}) + e^{-2t}(\vec{\jmath} \vec{k}).$
 - (c) $\vec{f}(t) = ((t^2 \vec{\imath} \vec{\jmath}) \cdot (\vec{\imath} t^2 \vec{\jmath})) \vec{\imath}$.
- 7. Find $\lim_{t\to 0} \vec{f}(t)$ if it exists. Explain why if the limit does not exist.
 - (a) $\vec{f}(t) = (1+2t)\vec{i} + (3-t)\vec{j} + \frac{t}{|t|}\vec{k}$.
 - (b) $\vec{f}(t) = e^t(\vec{\imath} \vec{\jmath}) + e^{-2t}(\vec{\jmath} \vec{k}).$
 - (c) $\vec{f}(t) = \frac{\sin t}{2t} \vec{i} + e^{2t} \vec{j} + \frac{t^2}{e^t} \vec{k}$.
 - (d) $\vec{f}(t) = t^2 \vec{i} + \frac{1 \cos t}{3t} \vec{j} + \frac{t}{t+1} \vec{k}$.
- 8. Let \vec{f} be a differentiable vector-valued function. Show that if $||\vec{f}(t)|| \neq 0$, then

$$\frac{d}{dt}(\|\vec{f}(t)\|) = \frac{\vec{f}(t) \cdot \vec{f'}(t)}{\|\vec{f}(t)\|}.$$

9. Suppose $\vec{\gamma}(t)$ is a differentiable vector-valued function. Show that $\|\vec{\gamma}(t)\|$ is constant iff $\vec{\gamma}(t) \cdot \vec{\gamma}'(t) = 0$ for all t.