Calculus — Homework 1 (Spring 2024)

1. Determine the boundedness and monotonicity (i.e. increasing or decreasing or neither) of the sequence with a_n , as indicated.

(a)
$$a_n = \frac{2}{n}$$
.

(d)
$$a_n = \sqrt{n^2 + 1}$$

(g)
$$a_n = \ln\left(\frac{n+1}{n}\right)$$
.

(b)
$$a_n = \frac{(-1)^n}{n}$$

(e)
$$a_n = \frac{2^n}{4^n + 1}$$

(h)
$$a_n = \sin \frac{\pi}{n+1}$$
.

(c)
$$a_n = \frac{n + (-1)^n}{n}$$

(a)
$$a_n = \frac{2}{n}$$
.
(b) $a_n = \frac{(-1)^n}{n}$.
(c) $a_n = \frac{n + (-1)^n}{n}$.
(d) $a_n = \sqrt{n^2 + 1}$.
(e) $a_n = \frac{2^n}{4^n + 1}$.
(f) $a_n = \frac{1}{2n} - \frac{1}{2n + 3}$.
(g) $a_n = \ln\left(\frac{n+1}{n}\right)$.
(h) $a_n = \sin\frac{\pi}{n+1}$.

(i)
$$a_n = \frac{3^n}{(n+1)^2}$$

2. Let a_n be the sequence satisfying the given rules. Find an explicit formula for a_n that does not involve an recursive relation. Prove your answer.

(a)
$$a_1 = 1$$
;

(a)
$$a_1 = 1;$$
 $a_{n+1} = \frac{1}{2}a_n + 1.$

(c)
$$a_1 = 1$$

(c)
$$a_1 = 1;$$
 $a_{n+1} = a_n + \frac{1}{n(n+1)}.$

(b)
$$a_1 = 1$$
;

(b)
$$a_1 = 1;$$
 $a_{n+1} = \frac{n}{n+1}a_n.$

(d)
$$a_1 = 1$$
;

(d)
$$a_1 = 1;$$
 $a_{n+1} = a_n + \dots + a_1.$

3. Assume |r| < 1. Prove that $\lim_{n \to \infty} r^n = 0$.

4. Let r be a real number, and

$$a_n = 1 + r + r^2 + \dots + r^{n-1}$$
.

(a) If r = 1, what is a_n for $n = 1, 2, 3, \dots$?

(b) If $r \neq 1$, what is a_n for $n = 1, 2, 3, \dots$? Find a formula for a_n that does not involve adding up the powers of r.

(c) For what values of r does a_n converge?

(d) Find the limit $\lim_{n\to\infty} a_n$ for |r|<1.

5. State whether the sequence converges and, if it does, find the limit.

(a)
$$a_n = 2^n$$
.

(d)
$$a_n = \frac{4^n}{\sqrt{n^2 + 1}}$$
.

(g)
$$a_n = \ln\left(\frac{n+1}{n}\right)$$
.

(b)
$$a_n = \frac{(-1)^n}{n}$$

(e)
$$a_n = \frac{2^n}{4^n + 1}$$
.

$$(h) \ a_n = \sin \frac{\pi}{n+1}.$$

(c)
$$a_n = \frac{n + (-1)^n}{n}$$

(f)
$$a_n = \frac{1}{2n} - \frac{1}{2n+3}$$
.

(a)
$$a_n = 2^n$$
.
(b) $a_n = \frac{(-1)^n}{n}$.
(c) $a_n = \frac{n + (-1)^n}{n}$.
(d) $a_n = \frac{4^n}{\sqrt{n^2 + 1}}$.
(e) $a_n = \frac{2^n}{4^n + 1}$.
(f) $a_n = \frac{1}{2n} - \frac{1}{2n + 3}$.
(g) $a_n = \ln\left(\frac{n+1}{n}\right)$.
(h) $a_n = \sin\frac{\pi}{n+1}$.
(i) $a_n = \frac{(n+1)(n+2)}{(n+3)(n+4)}$