Calculus - Homework 1 (Spring 2024)

1. Determine the boundedness and monotonicity (i.e. increasing or decreasing or neither) of the sequence with a_{n}, as indicated.
(a) $a_{n}=\frac{2}{n}$.
(d) $a_{n}=\sqrt{n^{2}+1}$.
(g) $a_{n}=\ln \left(\frac{n+1}{n}\right)$.
(b) $a_{n}=\frac{(-1)^{n}}{n}$.
(e) $a_{n}=\frac{2^{n}}{4^{n}+1}$.
(h) $a_{n}=\sin \frac{\pi}{n+1}$.
(c) $a_{n}=\frac{n+(-1)^{n}}{n}$.
(f) $a_{n}=\frac{1}{2 n}-\frac{1}{2 n+3}$.
(i) $a_{n}=\frac{3^{n}}{(n+1)^{2}}$.
2. Let a_{n} be the sequence satisfying the given rules. Find an explicit formula for a_{n} that does not involve an recursive relation. Prove your answer.
(a) $a_{1}=1 ; \quad a_{n+1}=\frac{1}{2} a_{n}+1$.
(c) $a_{1}=1 ; \quad a_{n+1}=a_{n}+\frac{1}{n(n+1)}$.
(b) $a_{1}=1 ; \quad a_{n+1}=\frac{n}{n+1} a_{n}$.
(d) $a_{1}=1 ; \quad a_{n+1}=a_{n}+\cdots+a_{1}$.
3. Assume $|r|<1$. Prove that $\lim _{n \rightarrow \infty} r^{n}=0$.
4. Let r be a real number, and

$$
a_{n}=1+r+r^{2}+\cdots+r^{n-1}
$$

(a) If $r=1$, what is a_{n} for $n=1,2,3, \cdots$?
(b) If $r \neq 1$, what is a_{n} for $n=1,2,3, \cdots$? Find a formula for a_{n} that does not involve adding up the powers of r.
(c) For what values of r does a_{n} converge?
(d) Find the limit $\lim _{n \rightarrow \infty} a_{n}$ for $|r|<1$.
5. State whether the sequence converges and, if it does, find the limit.
(a) $a_{n}=2^{n}$.
(d) $a_{n}=\frac{4^{n}}{\sqrt{n^{2}+1}}$.
(g) $a_{n}=\ln \left(\frac{n+1}{n}\right)$.
(b) $a_{n}=\frac{(-1)^{n}}{n}$.
(e) $a_{n}=\frac{2^{n}}{4^{n}+1}$.
(h) $a_{n}=\sin \frac{\pi}{n+1}$.
(c) $a_{n}=\frac{n+(-1)^{n}}{n}$.
(f) $a_{n}=\frac{1}{2 n}-\frac{1}{2 n+3}$.
(i) $a_{n}=\frac{(n+1)(n+2)}{(n+3)(n+4)}$.

