Calculus — Homework 10 (Spring 2024)

- 1. Find maxima or minima with side conditions.
 - (a) Minimize $x^2 + y^2$; on the hyperbola xy = 1.
 - (b) Maximize x + y on the curve $x^4 + y^4 = 1$.
 - (c) Minimize x + 2y + 4z on the sphere $x^2 + y^2 + z^2 = 7$. (If you are not familiar with functions of three variables, you can find examples on page 846 in the textbook.)
- 2. Let x, y, z be the three angles of a triangle. Determine the maximum value of

$$f(x, y, z) = \sin x \sin y \sin z.$$

3. Let R be the rectangle $a \le x \le b, c \le y \le d$. Show that, if f is continuous on [a, b] and g is continuous on [c, d], then

$$\iint\limits_{R} f(x)g(y)\,dxdy = \bigg(\int_{a}^{b} f(x)\,dx\bigg) \cdot \bigg(\int_{c}^{d} g(y)\,dy\bigg).$$

4. Evaluate the integral for $\Omega: 0 \le x \le 1, 0 \le y \le 3$.

(a)
$$\iint_{\Omega} x^2 dx dy.$$

(b)
$$\iint_{\Omega} e^{x+y} dxdy.$$

5. Evaluate the integral for $\Omega: 0 \le x \le 1, 0 \le y \le x$.

(a)
$$\iint_{\Omega} x^3 y \, dx dy.$$

(b)
$$\iint_{\Omega} x^2 y^2 dx dy.$$

6. Evaluate the double integral.

(a)
$$\iint_{\Omega} (x + 3y^3) dxdy$$
, $\Omega : 0 \le x^2 + y^2 \le 1$.

(b)
$$\iint\limits_{\Omega} \sqrt{xy}\,dxdy, \quad \Omega: 0 \leq y \leq 1, y^2 \leq x \leq y.$$

(c)
$$\iint_{\Omega} (4-y^2) dxdy$$
, Ω is the bounded region between $y^2 = 2x$ and $y^2 = 8 - 2x$.

(d)
$$\iint_{\Omega} e^{-y^2/2} dxdy$$
, Ω is the triangular region bounded by the y-axis, $2y = x$, $y = 1$.

(e)
$$\iint_{\Omega} (3xy^3 - y) dxdy$$
, Ω is the region between $y = |x|$ and $y = -|x|$, $x \in [-1, 1]$.

- 7. Find the area of the first quadrant region bounded by xy = 2, y = 1, y = x + 1.
- 8. Find the volume under the paraboloid $z=x^2+y^2$ within the cylinder $x^2+y^2\leq 1,\,z\geq 0$.