Calculus - Homework 9 (Fall 2023)

1. Sketch the region bounded by the curves and calculate the area of the region.
(a) $4 x=4 y-y^{2}, \quad 4 x-y=0$.
(b) $x=y^{2}, \quad x=12-2 y^{2}$.
2. Find the length of the following curves.
(a) $y=\frac{x^{3}}{12}+\frac{1}{x}, \quad 1 \leq x \leq 4$.
(b) $x=2 y^{3 / 2}, \quad 0 \leq y \leq 1$.

3 . Find the area of the surface generate by revolving the curve $y=2 \sqrt{x}, 1 \leq x \leq 2$, about the x-axis.
4. Sketch the region Ω bounded by the curves and find the volume of the solid generated by revolving this region about the x-axis.
(a) $y=x, \quad y=0, \quad x=1$.
(b) $y=x^{3}, \quad x+y=10, \quad y=1$.
(c) $y=\cos x, \quad y=x+1, \quad x=\frac{1}{2} \pi$.
5. Sketch the region Ω bounded by the curves and find the volume of the solid generated by revolving this region about the y-axis.
(a) $y=x, \quad y=0, \quad x=1$.
(b) $y=x^{2}, \quad y=x^{1 / 3}$.

We choose the codomain to be the range of a function in the following questions.
6. Determine whether or not the function is one-to-one. If the function has an inverse, find it and sketch the graphs of the function and its inverse.
(a) $f(x)=5 x+3, \quad x \in(-\infty, \infty)$.
(c) $f(x)=\sin x, \quad x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
(b) $f(x)=1-x^{2}, \quad x \in(-\infty, \infty)$.
(d) $f(x)=\cos x, \quad x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
7. Verify that f has an inverse and find $\left(f^{-1}\right)^{\prime}(c)$.
(a) $f(x)=x^{3}+1, x \in(-\infty, \infty) ; c=9$.
(b) $f(x)=1-2 x-x^{3}, x \in(-\infty, \infty) ; c=4$.
(c) $f(x)=\sin x,-\frac{1}{2} \pi<x<\frac{1}{2} \pi ; \quad c=-\frac{1}{2}$.
(d) $f(x)=\frac{x+3}{x-1}, x>1 ; c=3$.
(e) $f(x)=\int_{2}^{x} \sqrt{1+t^{2}} d t, x \in(-\infty, \infty) ; c=0$.
8. Set

$$
f(x)=\int_{2}^{x} \sqrt{1+t^{2}} d t
$$

(a) Show that f has an inverse.
(b) Find $\left(f^{-1}\right)^{\prime}(0)$.

