Calculus — Homework 9 (Fall 2023)

- 1. Sketch the region bounded by the curves and calculate the area of the region.
 - (a) $4x = 4y y^2$, 4x y = 0. (b) $x = y^2$, $x = 12 - 2y^2$.
- 2. Find the length of the following curves.

(a)
$$y = \frac{x^3}{12} + \frac{1}{x}$$
, $1 \le x \le 4$.
(b) $x = 2y^{3/2}$, $0 \le y \le 1$.

- 3. Find the area of the surface generate by revolving the curve $y = 2\sqrt{x}$, $1 \le x \le 2$, about the x-axis.
- 4. Sketch the region Ω bounded by the curves and find the volume of the solid generated by revolving this region about the x-axis.
 - (a) y = x, y = 0, x = 1.(b) $y = x^3$, x + y = 10, y = 1. (c) $y = \cos x$, y = x + 1, $x = \frac{1}{2}\pi$.
- 5. Sketch the region Ω bounded by the curves and find the volume of the solid generated by revolving this region about the y-axis.
 - (a) y = x, y = 0, x = 1. (b) $y = x^2$, $y = x^{1/3}$.

We choose the codomain to be the range of a function in the following questions.

- 6. Determine whether or not the function is one-to-one. If the function has an inverse, find it and sketch the graphs of the function and its inverse.
 - (a) f(x) = 5x + 3, $x \in (-\infty, \infty)$.

(b)
$$f(x) = 1 - x^2$$
, $x \in (-\infty, \infty)$.

- 7. Verify that f has an inverse and find $(f^{-1})'(c)$.

 - $\begin{array}{ll} \text{(a)} & f(x) = x^3 + 1, \, x \in (-\infty, \infty); \ c = 9. \\ \text{(b)} & f(x) = 1 2x x^3, \, x \in (-\infty, \infty); \ c = 4. \\ \text{(c)} & f(x) = \sin x, \, -\frac{1}{2}\pi < x < \frac{1}{2}\pi; \ c = -\frac{1}{2}. \end{array} \\ \begin{array}{ll} \text{(d)} & f(x) = \frac{x+3}{x-1}, \, x > 1; \ c = 3. \\ \text{(e)} & f(x) = \int_2^x \sqrt{1+t^2} \, dt, \, x \in (-\infty, \infty); \ c = 0. \end{array}$

(c) $f(x) = \sin x$, $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. (d) $f(x) = \cos x, \quad x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right].$

8. Set

$$f(x) = \int_2^x \sqrt{1+t^2} \, dt$$

- (a) Show that f has an inverse.
- (b) Find $(f^{-1})'(0)$.