Calculus - Homework 6 (Fall 2023)

1. Express $d y / d x$ in terms of x and y.
(a) $x^{2}+y^{2}=4$.
(c) $\sin (x+y)=x y$.
(b) $x^{3}+y^{3}-3 x y=0$.
(d) $\sqrt{x}+\sqrt{y}=4, x, y>0$.
2. Find equations for the tangent line at the point indicated.
(a) $9 x^{2}+4 y^{2}=72 ; \quad(2,3)$.
(b) $x^{2}+x y+2 y^{2}=28 ; \quad(-2,-3)$.
(c) $x=\cos y ; \quad\left(\frac{1}{2}, \frac{\pi}{3}\right)$.
3. (i) Determine whether or not f satisfies the conditions of the mean value theorem on the indicated interval $[a, b]$. (ii) Find all the numbers c such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.
(a) $f(x)=x^{3}-x ; \quad[0,1]$.
(d) $f(x)=\sin x ; \quad[0, \pi]$.
(b) $f(x)=x^{2} ; \quad[1,2]$.
(e) $f(x)=\sqrt{1-x^{2}} ; \quad[0,1]$.
(c) $f(x)=3 \sqrt{x}-4 x ; \quad[1,4]$.
(f) $f(x)=x^{2 / 3}-1 ; \quad[-1,1]$.
4. Suppose that f is differentiable on $(2,6)$ and continuous on $[2,6]$. Given that $1 \leq f^{\prime}(x) \leq 3$ for all x in $(2,6)$, show that

$$
4 \leq f(6)-f(2) \leq 12
$$

5. Prove that for all real numbers x and y
(a) $|\cos x-\cos y| \leq|x-y|$.
(b) $|\sin x-\sin y| \leq|x-y|$.
6. Suppose that $f^{\prime \prime}$ is continuous on $[a, b]$ and that f has 3 distinct zeros in $[a, b]$. Prove that $f^{\prime \prime}$ has at least one zero in (a, b).
7. Find the intervals on which f is increasing and the intervals on which f is decreasing.
(a) $f(x)=x^{3}-3 x+2$.
(c) $f(x)=\left|x^{2}-5\right|$.
(b) $f(x)=x+\frac{1}{x}$.
(d) $f(x)=x-\cos x$.
8. Show that

$$
\tan x>x
$$

for all x in $\left(0, \frac{\pi}{2}\right)$.
9. True or false? Explain your answers.
(a) The function $f(x)=x^{2}$ is an increasing function on $(-\infty, \infty)$.
(b) The function $f(x)=x^{2}$ is a decreasing function on $(-\infty, \infty)$.
(c) The function $f(x)=x^{2}$ is an increasing function on $(0, \infty)$.
(d) The function $f(x)=x^{3}$ is an increasing function on $(-\infty, \infty)$.
10. Suppose a function f has derivative

$$
f^{\prime}(x)=x^{3}(x-1)^{2}(x+1)(x-2)
$$

At what numbers x, if any, does f have a local maximum? A local minimum?
11. Find the critical points, local maximums and local minimums of f.
(a) $f(x)=x^{3}-3 x+2$.
(c) $f(x)=\left|x^{2}-5\right|$.
(b) $f(x)=x+\frac{1}{x}$.
(d) $f(x)=x-\cos x$.

