Calculus — Homework 6 (Fall 2023)

- 1. Express dy/dx in terms of x and y.
 - (a) $x^2 + y^2 = 4$. (b) $x^3 + y^3 - 3xy = 0$. (c) $\sin(x+y) = xy$. (c) $\sqrt{x} + \sqrt{y} = 4$, x, y > 0.

2. Find equations for the tangent line at the point indicated.

- (a) $9x^2 + 4y^2 = 72$; (2,3). (b) $x^2 + xy + 2y^2 = 28$; (-2,-3). (c) $x = \cos y$; $(\frac{1}{2}, \frac{\pi}{3})$.
- 3. (i) Determine whether or not f satisfies the conditions of the mean value theorem on the indicated interval [a, b]. (ii) Find all the numbers c such that $f'(c) = \frac{f(b) f(a)}{b-a}$.
 - (a) $f(x) = x^3 x;$ [0, 1]. (b) $f(x) = x^2;$ [1, 2]. (c) $f(x) = 3\sqrt{x} - 4x;$ [1, 4]. (d) $f(x) = \sin x;$ [0, π]. (e) $f(x) = \sqrt{1 - x^2};$ [0, 1]. (f) $f(x) = x^{2/3} - 1;$ [-1, 1].
- 4. Suppose that f is differentiable on (2,6) and continuous on [2,6]. Given that $1 \le f'(x) \le 3$ for all x in (2,6), show that

$$4 \le f(6) - f(2) \le 12.$$

- 5. Prove that for all real numbers x and y
 - (a) $|\cos x \cos y| \le |x y|$.
 - (b) $|\sin x \sin y| \le |x y|$.
- 6. Suppose that f'' is continuous on [a, b] and that f has 3 distinct zeros in [a, b]. Prove that f'' has at least one zero in (a, b).
- 7. Find the intervals on which f is increasing and the intervals on which f is decreasing.

(a) f	$f(x) = x^3 - 3x + 2.$	(c)	$f(x) = x^2 - 5 .$
(b) <i>f</i>	$f(x) = x + \frac{1}{x}.$	(d)	$f(x) = x - \cos x.$

8. Show that

 $\tan x > x,$

for all x in $(0, \frac{\pi}{2})$.

- 9. True or false? Explain your answers.
 - (a) The function $f(x) = x^2$ is an increasing function on $(-\infty, \infty)$.
 - (b) The function $f(x) = x^2$ is a decreasing function on $(-\infty, \infty)$.
 - (c) The function $f(x) = x^2$ is an increasing function on $(0, \infty)$.
 - (d) The function $f(x) = x^3$ is an increasing function on $(-\infty, \infty)$.
- 10. Suppose a function f has derivative

$$f'(x) = x^3(x-1)^2(x+1)(x-2)$$

At what numbers x, if any, does f have a local maximum? A local minimum?

11. Find the critical points, local maximums and local minimums of f.

(a)
$$f(x) = x^3 - 3x + 2.$$

(b) $f(x) = x + \frac{1}{x}.$
(c) $f(x) = |x^2 - 5|.$
(d) $f(x) = x - \cos x.$