Calculus — Homework 6.5 (Fall 2023)

- 1. True or false? Explain your answers.
 - (a) The equation $6x^4 7x + 1 = 0$ has 4 distinct real roots.
 - (b) The equation $x^5 + 13x + 1 = 0$ has exactly one real root.

Solution: (a) F (b) T

2. Find the critical points. Then find and classify all the extreme values.

(a)
$$f(x) = x^2 - 4x + 1$$
, $0 \le x \le 3$.
(b) $f(x) = \frac{x^2}{1 + x^2}$, $-1 \le x \le 2$.
(c) $f(x) = \sin 2x - x$, $0 \le x \le \pi$.
(d) $f(x) = 1 - \sqrt[3]{x - 1}$, $x \in (-\infty, \infty)$.
(e) $f(x) = \begin{cases} x^2 + 2x + 2, & x < 0, \\ x^2 - 2x + 2, & 0 \le x \le 2. \end{cases}$

Solution:

- (a) critical point: x = 2. endpoint: x = 0, 3. f(0) = 1 is a global maximum, f(2) = -3 is a global minimum, f(3) = -2 is a local maximum.
- (b) critical point: x = 0, endpoint: x = -1, 2. $f(-1) = \frac{1}{2}$ is a local maximum, f(0) = 0 is a global minimum, $f(2) = \frac{4}{5}$ is a global maximum.
- (c) critical point: $x = \frac{\pi}{6}, \frac{5\pi}{6}$, endpoint: $x = 0, \pi$. f(0) = 0 is a local minimum, $f(\frac{\pi}{6}) = \frac{\sqrt{3}}{2} - \frac{\pi}{6}$ is a global maximum, $f(\frac{5\pi}{6}) = -\frac{\sqrt{3}}{2} - \frac{5\pi}{6}$ is global minimum, $f(\pi) = -\pi$ is a local maximum.
- (d) critical point: x = 1. No maximum, no minimum.
- (e) critical point: x = -1, 0, 1, endpoint: x = 2. global minimum: f(-1) = f(1) = 1, local maximum: f(0) = f(2) = 2.
- 3. Find the greatest possible value of xy given that x and y are both positive and x + y = 40.

Solution: 400

4. Describe the concavity of the graph and find the points of inflection (if any).

(a)
$$f(x) = x + \frac{1}{x}$$
.
(b) $f(x) = x^3(1-x)$.
(c) $f(x) = \sin^2 x$, $0 \le x \le \pi$.

Solution:

- (a) concave down on $(-\infty, 0)$, concave up on $(0, \infty)$, no point of inflection
- (b) concave down on $(-\infty, 0) \cup (\frac{1}{2}, \infty)$, concave up on $(0, \frac{1}{2})$ point of inflection: $(0, f(0)) = (0, 0), (\frac{1}{2}, f(\frac{1}{2})) = (\frac{1}{2}, \frac{1}{16})$
- (c) concave down on $(\frac{\pi}{4}, \frac{3\pi}{4})$, concave up on $(0, \frac{\pi}{4}) \cup (\frac{3\pi}{4}, \pi)$ point of inflection: $(\frac{\pi}{4}, f(\frac{\pi}{4})) = (\frac{\pi}{4}, \frac{1}{2}), (\frac{3\pi}{4}, f(\frac{3\pi}{4})) = (\frac{3\pi}{4}, \frac{1}{2})$
- 5. Determine A and B so that the curve

$$y = A\cos 2x + B\sin 3x$$

has a point of inflection at (1, 4).

|--|

- 6. Prove that if $|f(x) (3x+2)| \le |x|^{\frac{3}{2}}$ for any real numbers x, then f is differentiable at 0, and y = 3x+2 is the tangent line of the graph of f at (0, f(0)). (Approximation of f by a line around x = 0.)
- 7. Calculate the following limits.

(a)	$\lim_{x \to 0^+} \frac{\sin x}{\sqrt{x}}.$	(e)	$\lim_{x \to 0} \frac{\sqrt{2+x} - \sqrt{2-x}}{x}.$
(b)	$\lim_{x \to 4} \frac{\sqrt{x-2}}{x-4}.$	(f)	$\lim_{x \to 1} \frac{x^{1/2} - x^{1/4}}{x - 1}.$
(c)	$\lim_{x \to 0} \frac{x + \sin(\pi x)}{x - \sin(\pi x)}.$	(g)	$\lim_{x \to 0} \frac{1}{x^2} - \frac{1}{\sin^2 x}.$
(d)	$\lim_{x \to 0} \frac{\cos x - \cos 3x}{\sin(x^2)}.$	(h)	$\lim_{x \to (\pi/2)^-} (x - \frac{\pi}{2}) \sec x.$

Solution:							
(a) 0	(c) $\frac{1+\pi}{1-\pi}$	(e) $\frac{1}{\sqrt{2}}$	(g) $-\frac{1}{3}$				
(b) $\frac{1}{4}$	(d) 4	(f) $\frac{1}{4}$	(h) -1				

- 8. Read the descriptions about upper (Riemann) sum and lower (Riemann) sum on the following websites:
 - upper Riemann sum
 - lower Riemann sum