Calculus - Homework 6.5 (Fall 2023)

1. True or false? Explain your answers.
(a) The equation $6 x^{4}-7 x+1=0$ has 4 distinct real roots.
(b) The equation $x^{5}+13 x+1=0$ has exactly one real root.

Solution:

(a) F
(b) T
2. Find the critical points. Then find and classify all the extreme values.
(a) $f(x)=x^{2}-4 x+1, \quad 0 \leq x \leq 3$.
(b) $f(x)=\frac{x^{2}}{1+x^{2}}, \quad-1 \leq x \leq 2$.
(c) $f(x)=\sin 2 x-x, \quad 0 \leq x \leq \pi$.
(d) $f(x)=1-\sqrt[3]{x-1}, \quad x \in(-\infty, \infty)$.
(e) $f(x)= \begin{cases}x^{2}+2 x+2, & x<0, \\ x^{2}-2 x+2, & 0 \leq x \leq 2\end{cases}$

Solution:

(a) critical point: $x=2$. endpoint: $x=0,3$.
$f(0)=1$ is a global maximum, $f(2)=-3$ is a global minimum,
$f(3)=-2$ is a local maximum.
(b) critical point: $x=0$, endpoint: $x=-1,2$.
$f(-1)=\frac{1}{2}$ is a local maximum, $f(0)=0$ is a global minimum,
$f(2)=\frac{4}{5}$ is a global maximum.
(c) critical point: $x=\frac{\pi}{6}, \frac{5 \pi}{6}$, endpoint: $x=0, \pi$.
$f(0)=0$ is a local minimum, $f\left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}-\frac{\pi}{6}$ is a global maximum,
$f\left(\frac{5 \pi}{6}\right)=-\frac{\sqrt{3}}{2}-\frac{5 \pi}{6}$ is global minimum, $f(\pi)=-\pi$ is a local maximum.
(d) critical point: $x=1$. No maximum, no minimum.
(e) critical point: $x=-1,0,1$, endpoint: $x=2$.
global minimum: $f(-1)=f(1)=1$, local maximum: $f(0)=f(2)=2$.
3. Find the greatest possible value of $x y$ given that x and y are both positive and $x+y=40$.

Solution: 400
4. Describe the concavity of the graph and find the points of inflection (if any).
(a) $f(x)=x+\frac{1}{x}$.
(b) $f(x)=x^{3}(1-x)$.
(c) $f(x)=\sin ^{2} x, \quad 0 \leq x \leq \pi$.

Solution:

(a) concave down on $(-\infty, 0)$, concave up on $(0, \infty)$, no point of inflection
(b) concave down on $(-\infty, 0) \cup\left(\frac{1}{2}, \infty\right)$, concave up on $\left(0, \frac{1}{2}\right)$
point of inflection: $(0, f(0))=(0,0),\left(\frac{1}{2}, f\left(\frac{1}{2}\right)\right)=\left(\frac{1}{2}, \frac{1}{16}\right)$
(c) concave down on $\left(\frac{\pi}{4}, \frac{3 \pi}{4}\right)$, concave up on $\left(0, \frac{\pi}{4}\right) \cup\left(\frac{3 \pi}{4}, \pi\right)$
point of inflection: $\left(\frac{\pi}{4}, f\left(\frac{\pi}{4}\right)\right)=\left(\frac{\pi}{4}, \frac{1}{2}\right),\left(\frac{3 \pi}{4}, f\left(\frac{3 \pi}{4}\right)\right)=\left(\frac{3 \pi}{4}, \frac{1}{2}\right)$
5. Determine A and B so that the curve

$$
y=A \cos 2 x+B \sin 3 x
$$

has a point of inflection at $(1,4)$.

Solution: $\mathrm{A}=\frac{36}{5 \cos 2}, \mathrm{~B}=-\frac{16}{5 \sin 3}$.
6. Prove that if $|f(x)-(3 x+2)| \leq|x|^{\frac{3}{2}}$ for any real numbers x, then f is differentiable at 0 , and $y=3 x+2$ is the tangent line of the graph of f at $(0, f(0))$. (Approximation of f by a line around $x=0$.)
7. Calculate the following limits.
(a) $\lim _{x \rightarrow 0^{+}} \frac{\sin x}{\sqrt{x}}$.
(e) $\lim _{x \rightarrow 0} \frac{\sqrt{2+x}-\sqrt{2-x}}{x}$.
(b) $\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}$.
(f) $\lim _{x \rightarrow 1} \frac{x^{1 / 2}-x^{1 / 4}}{x-1}$.
(c) $\lim _{x \rightarrow 0} \frac{x+\sin (\pi x)}{x-\sin (\pi x)}$.
(g) $\lim _{x \rightarrow 0} \frac{1}{x^{2}}-\frac{1}{\sin ^{2} x}$.
(d) $\lim _{x \rightarrow 0} \frac{\cos x-\cos 3 x}{\sin \left(x^{2}\right)}$.
(h) $\lim _{x \rightarrow(\pi / 2)^{-}}\left(x-\frac{\pi}{2}\right) \sec x$.

Solution:

(a) 0
(c) $\frac{1+\pi}{1-\pi}$
(e) $\frac{1}{\sqrt{2}}$
(g) $-\frac{1}{3}$
(b) $\frac{1}{4}$
(d) 4
(f) $\frac{1}{4}$
(h) -1
8. Read the descriptions about upper (Riemann) sum and lower (Riemann) sum on the following websites:

- upper Riemann sum
- lower Riemann sum

