Calculus - Homework 4 (Fall 2023)

1. Use the intermediate value theorem to show that there is a solution of the given equation in the indicated interval.
(a) $2 x^{3}-4 x^{2}+5 x-4=0, \quad[1,2]$.
(b) $\sin x+2 \cos x-x^{2}=0, \quad[0, \pi / 2]$.
2. (Brouwer fixed-point theorem.) Show that if f is continuous on $[0,1]$ and $0 \leq f(x) \leq 1$ for all x in $[0,1]$, then there exists at least one point c in $[0,1]$ at which $f(c)=c$. (HINT: Apply the intermediate value theorem to the function $g(x)=x-f(x)$.)
3. True or false? Explain how your answers are consistent with the extreme value theorem
(a) The function $f(x)=x^{2}$ attains a maximum value on $[-1,1]$.
(b) The function $f(x)=x^{2}$ attains a minimum value on $[-1,1]$.
(c) The function $f(x)=x^{2}$ attains a maximum value on $(-1,1)$.
(d) The function $f(x)=x^{2}$ attains a minimum value on $(-1,1)$.
(e) The function $f(x)=x^{2}$ is bounded on $(-1,1)$.
4. Draw the graph of f; indicate where f is not differentiable, and indicate where f is not continuous.
(a) $f(x)=\sqrt{|x|}$.
(b) $f(x)=\left|x^{2}-4\right|$.
(c) $f(x)= \begin{cases}x^{2}, & |x| \leq 1, \\ 2-x, & |x|>1 .\end{cases}$
