Calculus — Homework 4 (Fall 2023)

- 1. Use the intermediate value theorem to show that there is a solution of the given equation in the indicated interval.
 - (a) $2x^3 4x^2 + 5x 4 = 0$, [1, 2].
 - (b) $\sin x + 2\cos x x^2 = 0$, $[0, \pi/2]$.
- 2. (Brouwer fixed-point theorem.) Show that if f is continuous on [0, 1] and $0 \le f(x) \le 1$ for all x in [0, 1], then there exists at least one point c in [0, 1] at which f(c) = c. (HINT: Apply the intermediate value theorem to the function g(x) = x f(x).)
- 3. True or false? Explain how your answers are consistent with the extreme value theorem
 - (a) The function $f(x) = x^2$ attains a maximum value on [-1, 1].
 - (b) The function $f(x) = x^2$ attains a minimum value on [-1, 1].
 - (c) The function $f(x) = x^2$ attains a maximum value on (-1, 1).
 - (d) The function $f(x) = x^2$ attains a minimum value on (-1, 1).
 - (e) The function $f(x) = x^2$ is bounded on (-1, 1).
- 4. Draw the graph of f; indicate where f is not differentiable, and indicate where f is not continuous.

(a)
$$f(x) = \sqrt{|x|}$$
.
(b) $f(x) = |x^2 - 4|$.
(c) $f(x) = \begin{cases} x^2, & |x| \le 1, \\ 2 - x, & |x| > 1. \end{cases}$