Linear Agebra /0//2

Let us start with a set 3 = {d, &} of 2 elements. The vector space k(%) is the space
k® :={ad+b&|abeck}
which follows the rules:

() ad+b&=a'd+V &ifandonly ifa = a’ and b = V';
(2) clad+bé)+da" @+b &) = (ca+da)d+ (cb+ db).

Note that the map k? — k(%) : <”) > a @ + bé is an isomorphism, and thus 3 = {. &} is a basis

b
for k(A
More generally, let 3 be an arbitrary set. The vector space k?) is the space

kK = {all the maps 3 — k, = + a, such that a, = 0 except for finitely many elements = € 3}

= {Z ap v | ap = 0, except for finitely many elements € 3} (a common notation)

which follows the rules:
(1) > azx =3 by x if and only if a, = b, for any r € [3;
(2) (X agx)+d(> by x) =Y (cap + dby) z.

The map 3 — k¥, & — 1,z is a one-to-one map, so 3 can be regarded as a subset of k'?). It is
straightforward to show that following
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Theorem 2.8. Let V. -+ Vi and W be finite-dimensional vector spaces. Let
—~S -

Bp = {v,--- ob b and }:\{lui//u\m}

be bases for Vy, and W, respectively. A multili

FiVixo-xVeosW

is uniquely determined by the ny - - - ny vectors

vl |2 ‘.k 7 .
('l‘ii.l‘iQ."' 'lik y 1 S I‘pg n‘p'

J

e k are the numbers such that

in W. Furthermore, assunfe

m
~1 12 vk —_— ] w
f(lll'l’LQ‘... _llk) —Z llw-”c“-]' (5)
J=1
The map
ltilinear Vi x -+~ x Vi = W i . d ek
multilinear V1 X X Vg —> — @5 i ) 1<iom | Big i
’ 1§p§"p |
. Jig, ik ) 1<5<m 0
1<ip<n,

is an isomorphism of vector spaces.

The collection of numbers (fl?l ik) 1<j<m is sometimes referred as
ik ) 1<j<m
1<ip<ny

the k-linear map f.

Definition | edit]

bilinaar

The upper and lower indices are frequently not distinguished, unless the algebra is endowed with some other structure that would require
this (for example, a pseudo-Riemannian metric, on the algebra of the indefinite orthogonal group so(p,q)). That is, structure constants are
often written with all-upper, or all-lower indexes. The distinction between upper and lower is then a convention, reminding the reader that
lower indices behave like the components of a dual vector, i.e. are covariant under a change of basis, while upper indices are contravariant.

The structure constants obviously depend on the chosen basis. For Lie algebras, one frequently used convention for the basis is in terms of
the ladder operators defined by the Cartan subalgebra; this is presented further down in the article, after some preliminary examples.

Examplgf: Lie algebras )edi;

algebra product - is defined to be the Lie bracket: for two vectors A and B in the algebra, the productis A - B = [A, B]. In particular, the
algebra product - must not be confused with a matrix product, and thus sometimes requires an alternate notation.

There is no particular need to distinguish the upper and lower indices in this case; they can be written all up or all down. In physics, it is
common to use the notation T; for the generators, and fabc or fabc (ignoring the upper-lower distinction) for the structure constants. The
Lie bracket of pairs of generators is a linear combination of generators from the set, i.e.
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In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection.["] The metric conrfebtion is a specialization of the affine

connection to surfaces or other manifolds endowed with a metric, allowing distances to be measured on that surface. In differential geometry, an affine connection can
be defined without reference to a metric, and many additional concepts follow: parallel transport, covariant derivatives, geodesics, etc. also do not require the concept of
a metric.[2I%] However, when a metric is available, these concepts can be directly tied to the "shape" of the manifold itself; that shape is determined by how the tangent
space is attached to the cotangent space by the metric tensor.[4] Abstractly, one would say that the manifold has an associated (orthonormal) frame bundle, with each
"frame" being a possible choice of a coordinate frame. An invariant metric implies that the structure group of the frame bundle is the orthogonal group O(p, ¢). As a
result, such a manifold is necessarily a (pseudo-)Riemannian manifold.[516] The Christoffel symbols provide a concrete representation of the connection of
(pseudo-)Riemannian geometry in terms of coordinates on the manifold. Additional concepts, such as parallel transport, geodesics, etc. can then be expressed in terms
of Christoffel symbols.

In general, there are an infinite number of metric connections for a given metric tensor; however, there is a unique connection that is free of torsion, the Levi-Civita
connection. It is common in physics and general relativity to work almost exclusively with the Levi-Civita connection, by working in coordinate frames (called holonomic
coordinates) where the torsion vanishes. For example, in Euclidean spaces, the Christoffel symbols describe how the local coordinate bases change from point to point.

At each point of the underlying n-dimensional manifold, for any local coordinate system around that point, the Christoffel symbols are denots @, Gk = 1525,
Each entry of this 7 X n % n array is a real number. Under linear coordinate transformations on the manifold, the Christoffel symbols transform Re"the components of a
tensor, but under general coordinate transformations (diffeomorphisms) they do not. Most of the algebraic properties of the Christoffel symbols follow from their
relationship to the affine connection; only a few follow from the fact that the structure group is the orthogonal group O(in2, 71) (or the Lorentz group O(3, 1) for general

relativity).

Christoffel symbols are used for performing practical calculations. For example, the Riemann curvature tensor can be expressed entirely in terms of the Christoffel
symbols and their first partial derivatives. In general relativity, the connection plays the role of the gravitational force field with the corresponding gravitational potential
being the metric tensor. When the coordinate system and the metric tensor share some symmetry, many of the l"ijk are zero.

The Christoffel symbols are named for Elwin Bruno Christoffel (1829—1900).[7]



10. Let N be the set of positive integers, and V,, = R for any n € N. Show that a basis for @, .y Va = B,y R
is countable, but a basis for [[,cy Vi = [[,,en R is uncountable.

Solution: Nontrivial part: show that the set {(1,¢!,#2, ---) |t € R} is linearly independent. Key:
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11. Show that there exist vector spaces W and V,,, a € I, such that the linear map

¥ : @ Hom(W, V) — Hom (W,@Va), \I/(ZTQ)(@) =3 Tu(w@)

acl acl acl acl

is not onto.



