Advanced Linear Algebra - Homework 9 (Fall 2022)

Let V and W be vector spaces over a field \mathbb{k}, unless otherwise stated.

1. Show that there exists an inner product on any finite-dimensional vector space over \mathbb{R}.
2. Show that there is NO symplectic bilinear form on the one-dimensional vector space \mathbb{R}.
3. Show that there is NO symplectic bilinear form on \mathbb{R}^{3}.
4. Let V be finite-dimensional a real vector space. Suppose we are given a complex structure J on V, i.e., $J: V \rightarrow V$ is a linear map such that

$$
J^{2}=J \circ J=-\mathrm{id}
$$

(a) With the complex scalar multiplication

$$
(a+b i) \cdot v:=a \cdot v+b \cdot J(v), \quad \forall v \in V
$$

show that V is a complex vector space.
(b) Show that the dimension of V as a real vector space is even.
(c) Let ω be a symplectic form on V such that $\omega(J v, J w)=\omega(v, w)$ for any $v, w \in V$. Show that the $\operatorname{map} g: V \times V \rightarrow \mathbb{R}$, defined by $g(v, w)=\omega(v, J w)$, is a symmetric bilinear form.
(d) Assume $g(-,-)=\omega(-, J-)$ is positive-definite. (Some people say V is a Kähler vector space in this case.) Let $h: V \times V \rightarrow \mathbb{C}$ be the map

$$
h(v, w):=g(v, w)-i \omega(v, w), \quad \forall v, w \in V
$$

Regarding V as a complex vector space, show that h is a Hermitian inner product on V with the property $h(J v, J w)=h(v, w), \forall v, w \in V$.
Recall that $h: V \times V \rightarrow C$ is called a Hermitian inner product on a complex vector space V if, for any $u, v, w \in V$, any $c \in \mathbb{C}$, one has
(i) $h(v, w)=\overline{h(w, v)}$,
(ii) $h(u+v, w)=h(u, w)+h(v, w)$ and $h(u, v+w)=h(u, v)+h(u, w)$,
(iii) $h(c \cdot v, w)=c \cdot h(v, w)$ and $h(v, c \cdot w)=\bar{c} \cdot h(v, w)$,
(iv) $h(v, v) \geq 0$, and $h(v, v)=0$ if and only if $v=0$.
5. Let A be an abelian group, and n be a positive integer. Show that if $n a=0$ for all $a \in A$, then A is a \mathbb{Z}_{n}-module with the \mathbb{Z}_{n}-action $[k] \cdot a=k \cdot a$. Here $[k] \in \mathbb{Z}_{n}$ is the image of $k \in \mathbb{Z}$ under the canonical projection $\mathbb{Z} \rightarrow \mathbb{Z}_{n}$.
6. Let M be an R-module over a ring R. If $f: M \rightarrow M$ is an R-linear map such that $f \circ f=f$, then

$$
M=\operatorname{ker}(f) \oplus \operatorname{im}(f)
$$

7. Let M be an R-module, and N be a submodule of M. Show that the equivalence classes $M / N=M / \sim$ of the relation $x \sim y \Leftrightarrow x-y \in N$ is an R-module with the operations

$$
a \cdot[x]+b \cdot[y]=[a \cdot x+b \cdot y]
$$

for $a, b \in R, x, y \in M$. Here $[x] \in M / N$ is the equivalence class which contains x.
8. Let R be a ring, and N be a submodule of an R-module M.
(a) Show that the inclusion map $\iota: N \hookrightarrow M$ and the projection map $\pi: M \rightarrow M / N$ are R-linear maps.
(b) Show that $\operatorname{ker} \pi=\operatorname{im} \iota, \operatorname{ker} \iota=0$ and $\operatorname{im} \pi=M / N$. That is, the sequence

$$
0 \longrightarrow N \longleftrightarrow M \xrightarrow{\iota} M / N \longrightarrow 0
$$

is a short exact sequence.
(c) Show that if there exists an R-linear map $j: M / N \rightarrow M$ such that $\pi \circ j=\operatorname{id}_{M / N}$, then there exists an R-linear map $p: M \rightarrow N$ such that $p \circ \iota=\mathrm{id}_{N}$, and vice versa. (Such an R-linear map is called a splitting of the short exact sequence.)
(d) Show that a splitting described in (c) determines an isomorphism of R-modules

$$
M \cong N \oplus M / N
$$

(e) Find a pair of M and N so that a splitting described in (c) does NOT exist. Justify your answer.

