Advanced Linear Algebra — Homework 9 (Fall 2022)

Let V and W be vector spaces over a field \Bbbk , unless otherwise stated.

- 1. Show that there exists an inner product on any finite-dimensional vector space over \mathbb{R} .
- 2. Show that there is NO symplectic bilinear form on the one-dimensional vector space \mathbb{R} .
- 3. Show that there is NO symplectic bilinear form on \mathbb{R}^3 .
- 4. Let V be finite-dimensional a real vector space. Suppose we are given a **complex structure** J on V, i.e., $J: V \to V$ is a linear map such that

$$J^2 = J \circ J = -\operatorname{id}.$$

(a) With the complex scalar multiplication

$$(a+bi) \cdot v := a \cdot v + b \cdot J(v), \quad \forall v \in V,$$

show that V is a complex vector space.

- (b) Show that the dimension of V as a real vector space is even.
- (c) Let ω be a symplectic form on V such that $\omega(Jv, Jw) = \omega(v, w)$ for any $v, w \in V$. Show that the map $g: V \times V \to \mathbb{R}$, defined by $g(v, w) = \omega(v, Jw)$, is a symmetric bilinear form.
- (d) Assume $g(-, -) = \omega(-, J-)$ is positive-definite. (Some people say V is a Kähler vector space in this case.) Let $h: V \times V \to \mathbb{C}$ be the map

$$h(v,w) := g(v,w) - i\omega(v,w), \qquad \forall v, w \in V.$$

Regarding V as a complex vector space, show that h is a **Hermitian inner product** on V with the property $h(Jv, Jw) = h(v, w), \forall v, w \in V$.

Recall that $h: V \times V \to C$ is called a **Hermitian inner product** on a complex vector space V if, for any $u, v, w \in V$, any $c \in \mathbb{C}$, one has

- (i) h(v, w) = h(w, v),
- (ii) h(u+v,w) = h(u,w) + h(v,w) and h(u,v+w) = h(u,v) + h(u,w),
- (iii) $h(c \cdot v, w) = c \cdot h(v, w)$ and $h(v, c \cdot w) = \overline{c} \cdot h(v, w)$,
- (iv) $h(v, v) \ge 0$, and h(v, v) = 0 if and only if v = 0.
- 5. Let A be an abelian group, and n be a positive integer. Show that if na = 0 for all $a \in A$, then A is a \mathbb{Z}_n -module with the \mathbb{Z}_n -action $[k] \cdot a = k \cdot a$. Here $[k] \in \mathbb{Z}_n$ is the image of $k \in \mathbb{Z}$ under the canonical projection $\mathbb{Z} \to \mathbb{Z}_n$.
- 6. Let M be an R-module over a ring R. If $f: M \to M$ is an R-linear map such that $f \circ f = f$, then

$$M = \ker(f) \oplus \operatorname{im}(f).$$

7. Let M be an R-module, and N be a submodule of M. Show that the equivalence classes $M/N = M/\sim$ of the relation $x \sim y \Leftrightarrow x - y \in N$ is an R-module with the operations

$$a \cdot [x] + b \cdot [y] = [a \cdot x + b \cdot y]$$

for $a, b \in R, x, y \in M$. Here $[x] \in M/N$ is the equivalence class which contains x.

- 8. Let R be a ring, and N be a submodule of an R-module M.
 - (a) Show that the inclusion map $\iota : N \hookrightarrow M$ and the projection map $\pi : M \twoheadrightarrow M/N$ are *R*-linear maps. (b) Show that ker $\pi = \operatorname{im} \iota$, ker $\iota = 0$ and im $\pi = M/N$. That is, the sequence

 $0 \longrightarrow N \stackrel{\iota}{\longrightarrow} M \stackrel{\pi}{\longrightarrow} M/N \longrightarrow 0$

is a short exact sequence.

- (c) Show that if there exists an *R*-linear map $j: M/N \to M$ such that $\pi \circ j = \mathrm{id}_{M/N}$, then there exists an *R*-linear map $p: M \to N$ such that $p \circ \iota = \mathrm{id}_N$, and vice versa. (Such an *R*-linear map is called a **splitting** of the short exact sequence.)
- (d) Show that a splitting described in (c) determines an isomorphism of *R*-modules

$$M \cong N \oplus M/N.$$

(e) Find a pair of M and N so that a splitting described in (c) does NOT exist. Justify your answer.