Advanced Linear Algebra — Homework 8 (Fall 2022)

Let V and W be vector spaces over a field k, unless otherwise stated.

1. Give a detailed proof of the following formula

$$\det \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} = \sum_{\sigma \in S_n} (-1)^{\sigma} a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}$$

2. Let $T: V \to W$ be a linear map, and k be a positive integer.

(a) Show that there exists a unique linear map

$$T_*:\Lambda^k V \to \Lambda^k W$$

such that

$$T_*(v_1 \wedge \cdots \wedge v_k) = T(v_1) \wedge \cdots \wedge T(v_k), \quad \forall v_1, \cdots, v_k \in V.$$

(b) Assume $T': W \to W'$ is another linear map. Show that

$$(T' \circ T)_* = T'_* \circ T_*$$

3. Let dim V = n, and $T: V \to V$ be a linear map. Since dim $\Lambda^n V = 1$, for any nonzero element $\omega \in \Lambda^n V$, one has

$$T_*\omega = d \cdot \omega$$

for some $d \in k$. In this exercise, we would like to show that one can define det(T) to be d. (An alternative definition of determinant.)

(a) Show that

$$T_*\omega = \det(T) \cdot \omega, \qquad \forall \, \omega \in \Lambda^n V$$

Note that the scalar multiple det(T) is independent of the choice of ω .

- (b) Let $T': V \to V$ be another linear map. Show that $\det(T' \circ T) = \det(T') \cdot \det(T)$.
- (c) Show that T is invertible if and only if $det(T) \neq 0$.
- 4. Let $\omega : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ be the map

$$\omega((x_1, x_2, x_3), (y_1, y_2, y_3)) := \det \begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix}$$

- (a) Show that ω is a skew-symmetric bilinear map.
- (b) Let $\{e_1, e_2, e_3\}$ be the standard basis for \mathbb{R}^3 , and let $\{\hat{e}_1, \hat{e}_2, \hat{e}_3\}$ be its dual basis. Find $a, b, c \in \mathbb{R}$ such that

$$\omega(v,w) = \langle a \, \hat{e}_1 \wedge \hat{e}_2 + b \, \hat{e}_1 \wedge \hat{e}_3 + c \, \hat{e}_2 \wedge \hat{e}_3 \, | \, v \wedge w \rangle, \qquad \forall \, v, w \in \mathbb{R}^3.$$

5. Let V be a 3-dimensional real vector space. Let $\{e_1, e_2, e_3\}$ be a basis for V, and $\{\hat{e}_1, \hat{e}_2, \hat{e}_3\}$ be its dual basis. Let v be the maps

$$\begin{split} \Lambda^1 V^{\vee} &\xrightarrow{\cong} \mathbb{R}^3, \qquad \alpha \mapsto v_{\alpha} = (a_1, a_2, a_3), \quad \text{if } \alpha = a_1 \hat{e}_1 + a_2 \hat{e}_2 + a_3 \hat{e}_3, \\ \Lambda^2 V^{\vee} &\xrightarrow{\cong} \mathbb{R}^3, \qquad \omega \mapsto v_{\omega} = (c_1, c_2, c_3), \quad \text{if } \omega = c_1 \, \hat{e}_2 \wedge \hat{e}_3 + c_2 \, \hat{e}_3 \wedge \hat{e}_1 + c_3 \, \hat{e}_1 \wedge \hat{e}_2. \end{split}$$

Show that

$$v_{\alpha \wedge \beta} = v_\alpha \times v_\beta$$

for any $\alpha, \beta \in \Lambda^1 V^{\vee}$. (The notation \times means the cross product.)

- 6. Let $\mathcal{F}(V)$ be the set of all the bases for a real *n*-dimensional vector space V $(n < \infty)$, and let \sim be the relation on $\mathcal{F}(V)$ defined by $\{e_i\} \sim \{\epsilon_j\}$ iff det $(a_{ij}) > 0$, where a_{ij} are given by $e_i = \sum_{j=1}^n a_{ij}\epsilon_j$. Prove that the relation \sim is an equivalence relation on $\mathcal{F}(V)$ with exactly two equivalence classes.
- 7. Let V be finite-dimensional, and $T: V \to V$ be an invertible linear map. For a basis $\beta = \{e_1, \dots, e_n\}$ for V, we denote by $T\beta$ the basis $T\beta = \{e_1, \dots, e_n\}$.
 - (a) Prove the following statements are equivalent.
 - (i) There exists a basis β for V such that β and $T\beta$ have the same orientation.
 - (ii) For any basis β for V, the bases β and $T\beta$ have the same orientation.

We say T is **orientation-preserving** if T satisfies one of the above conditions.

(b) Show that T is orientation-preserving if and only if det(T) > 0.