Advanced Linear Algebra - Homework 8 (Fall 2022)

Let V and W be vector spaces over a field \mathbb{k}, unless otherwise stated.

1. Give a detailed proof of the following formula

$$
\operatorname{det}\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right)=\sum_{\sigma \in S_{n}}(-1)^{\sigma} a_{1 \sigma(1)} a_{2 \sigma(2)} \cdots a_{n \sigma(n)} .
$$

2. Let $T: V \rightarrow W$ be a linear map, and k be a positive integer.
(a) Show that there exists a unique linear map

$$
T_{*}: \Lambda^{k} V \rightarrow \Lambda^{k} W
$$

such that

$$
T_{*}\left(v_{1} \wedge \cdots \wedge v_{k}\right)=T\left(v_{1}\right) \wedge \cdots \wedge T\left(v_{k}\right), \quad \forall v_{1}, \cdots, v_{k} \in V
$$

(b) Assume $T^{\prime}: W \rightarrow W^{\prime}$ is another linear map. Show that

$$
\left(T^{\prime} \circ T\right)_{*}=T_{*}^{\prime} \circ T_{*} .
$$

3. Let $\operatorname{dim} V=n$, and $T: V \rightarrow V$ be a linear map. Since $\operatorname{dim} \Lambda^{n} V=1$, for any nonzero element $\omega \in \Lambda^{n} V$, one has

$$
T_{*} \omega=d \cdot \omega
$$

for some $d \in \mathbb{k}$. In this exercise, we would like to show that one can $\operatorname{define} \operatorname{det}(T)$ to be d. (An alternative definition of determinant.)
(a) Show that

$$
T_{*} \omega=\operatorname{det}(T) \cdot \omega, \quad \forall \omega \in \Lambda^{n} V
$$

Note that the scalar multiple $\operatorname{det}(T)$ is independent of the choice of ω.
(b) Let $T^{\prime}: V \rightarrow V$ be another linear map. Show that $\operatorname{det}\left(T^{\prime} \circ T\right)=\operatorname{det}\left(T^{\prime}\right) \cdot \operatorname{det}(T)$.
(c) Show that T is invertible if and only if $\operatorname{det}(T) \neq 0$.
4. Let $\omega: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ be the map

$$
\omega\left(\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)\right):=\operatorname{det}\left(\begin{array}{ll}
x_{1} & y_{1} \\
x_{2} & y_{2}
\end{array}\right)
$$

(a) Show that ω is a skew-symmetric bilinear map.
(b) Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be the standard basis for \mathbb{R}^{3}, and let $\left\{\hat{e}_{1}, \hat{e}_{2}, \hat{e}_{3}\right\}$ be its dual basis. Find $a, b, c \in \mathbb{R}$ such that

$$
\omega(v, w)=\left\langle a \hat{e}_{1} \wedge \hat{e}_{2}+b \hat{e}_{1} \wedge \hat{e}_{3}+c \hat{e}_{2} \wedge \hat{e}_{3} \mid v \wedge w\right\rangle, \quad \forall v, w \in \mathbb{R}^{3}
$$

5. Let V be a 3 -dimensional real vector space. Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be a basis for V, and $\left\{\hat{e}_{1}, \hat{e}_{2}, \hat{e}_{3}\right\}$ be its dual basis. Let v be the maps

$$
\begin{array}{ll}
\Lambda^{1} V^{\vee} \xlongequal{\rightrightarrows} \mathbb{R}^{3}, & \alpha \mapsto v_{\alpha}=\left(a_{1}, a_{2}, a_{3}\right), \text { if } \alpha=a_{1} \hat{e}_{1}+a_{2} \hat{e}_{2}+a_{3} \hat{e}_{3}, \\
\Lambda^{2} V^{\vee} \stackrel{ }{\leftrightarrows} \mathbb{R}^{3}, & \omega \mapsto v_{\omega}=\left(c_{1}, c_{2}, c_{3}\right), \text { if } \omega=c_{1} \hat{e}_{2} \wedge \hat{e}_{3}+c_{2} \hat{e}_{3} \wedge \hat{e}_{1}+c_{3} \hat{e}_{1} \wedge \hat{e}_{2} .
\end{array}
$$

Show that

$$
v_{\alpha \wedge \beta}=v_{\alpha} \times v_{\beta}
$$

for any $\alpha, \beta \in \Lambda^{1} V^{\vee}$. (The notation \times means the cross product.)
6. Let $\mathcal{F}(V)$ be the set of all the bases for a real n-dimensional vector space $V(n<\infty)$, and let \sim be the relation on $\mathcal{F}(V)$ defined by $\left\{e_{i}\right\} \sim\left\{\epsilon_{j}\right\}$ iff $\operatorname{det}\left(a_{i j}\right)>0$, where $a_{i j}$ are given by $e_{i}=\sum_{j=1}^{n} a_{i j} \epsilon_{j}$. Prove that the relation \sim is an equivalence relation on $\mathcal{F}(V)$ with exactly two equivalence classes.
7. Let V be finite-dimensional, and $T: V \rightarrow V$ be an invertible linear map. For a basis $\beta=\left\{e_{1}, \cdots, e_{n}\right\}$ for V, we denote by $T \beta$ the basis $T \beta=\left\{e_{1}, \cdots, e_{n}\right\}$.
(a) Prove the following statements are equivalent.
(i) There exists a basis β for V such that β and $T \beta$ have the same orientation.
(ii) For any basis β for V, the bases β and $T \beta$ have the same orientation.

We say T is orientation-preserving if T satisfies one of the above conditions.
(b) Show that T is orientation-preserving if and only if $\operatorname{det}(T)>0$.

