

Advanced Linear Algebra — Homework 7 (Fall 2022)

Let V and W be vector spaces over a field \mathbb{k} .

1. Let $A = \mathbb{k}[x_1, \dots, x_k]$ be the space of polynomials in k variables, and let $\mu : A \otimes A \rightarrow A$ be the unique linear map such that $\mu(f \otimes g) = fg$ for any $f, g \in A$. Let $X, Y : \mathbb{k}[x_1, \dots, x_k] \rightarrow \mathbb{k}[x_1, \dots, x_k]$ be the linear maps

$$X(f) = a_1 \frac{\partial}{\partial x_1}(f) + \dots + a_k \frac{\partial}{\partial x_k}(f),$$

$$Y(f) = b_1 \frac{\partial}{\partial x_1}(f) + \dots + b_k \frac{\partial}{\partial x_k}(f),$$

where $f, a_1, \dots, a_k, b_1, \dots, b_k \in A$.

(a) Show that, for $D = X$ or Y ,

$$D \circ \mu = \mu \circ (\text{id}_A \otimes D + D \otimes \text{id}_A) \quad (1)$$

as maps $A \otimes A \rightarrow A$. (Such an operator is called a **derivation**.)

(b) Show that $D = X \circ Y - Y \circ X$ also satisfies the equation (1).

(c) Show that there exist derivations X and Y so that $X \circ Y$ does NOT satisfy the equation in (1).

2. Prove or disprove. ($S^0 V = \Lambda^0 V = \mathbb{k}$)

(a) $S^2(V \oplus W) \cong S^2V \oplus (V \otimes W) \oplus (V \otimes W) \oplus S^2W$.

(b) $S^k(V \oplus W) \cong \bigoplus_{i=0}^k (S^i V \otimes S^{k-i} W)$.

(c) $\Lambda^k(V \oplus W) \cong \bigoplus_{i=0}^k (\Lambda^i V \otimes \Lambda^{k-i} W)$.

3. Let $v, w \in V$. Suppose the base field $\mathbb{k} = \mathbb{R}$. True or false. Explain your answers.

(a) $(v + w) \odot (v - w) = v \odot v - w \odot w$.

(b) $(v + w) \odot (v + w) = v \odot v + 2v \odot w + w \odot w$.

(c) $(v + 2w) \odot (v + w) = v \odot v + w \odot (2w)$.

(d) $(2v + w) \odot (v + 3w) = 5 \cdot v \odot w$.

(e) $(v + w) \wedge (v - w) = v \wedge v - w \wedge w$.

(f) $(v + w) \wedge (v + w) = 0$.

(g) $(v + 2w) \wedge (v + w) = v \wedge w$.

(h) $(2v + w) \wedge (v + 3w) = 5 \cdot v \wedge w$.

4. Recall that $A \in V^{\otimes k}$ is called a symmetric k -tensor if $\tau_\sigma(A) = A$ for all $\sigma \in S_k$. We denote the space of symmetric k -tensors by $\text{Sym}^k V$. Let $\pi : \text{Sym}^k V \rightarrow S^k V$ be the restriction of the quotient map.

(a) Show that there exists a bilinear map $S^k V \times S^l V \rightarrow S^{k+l} V$ with the property

$$(v_1 \odot \dots \odot v_k, v_{k+1} \odot \dots \odot v_{k+l}) \mapsto v_1 \odot \dots \odot v_k \odot v_{k+1} \odot \dots \odot v_{k+l}$$

for any $v_1, \dots, v_{k+l} \in V$. This bilinear map is denoted by \odot .

(b) Let $A = v_1 \otimes v_2 + v_2 \otimes v_1$ and $B = v_3$, where $v_1, v_2, v_3 \in V$. Show that $A \in \text{Sym}^2 V$, $B \in \text{Sym}^1 V$, but $A \otimes B \notin \text{Sym}^3 V$.

(c) Find $C \in \text{Sym}^3 V$ such that

$$\pi(C) = \pi(A) \odot \pi(B).$$

(d) Show that there exists a bilinear map $\text{Sym}^k V \times \text{Sym}^l V \rightarrow \text{Sym}^{k+l} V$, $(A, B) \mapsto A \tilde{\odot} B$ such that

$$\pi(A \tilde{\odot} B) = \pi(A) \odot \pi(B).$$

Usually, this operation $\tilde{\odot}$ is also denoted by \odot .

(e) Are there analogous operations for $\Lambda^k V$?

5. Let $\mathbb{k}[x_1, \dots, x_n]^2$ be the space of homogeneous polynomials of degree 2. Suppose $\dim V = n$. Recall that one has isomorphisms

$$\begin{aligned}\phi_1 : S^2 V^\vee &\xrightarrow{\cong} \mathbb{k}[x_1, \dots, x_n]^2, \\ \phi_2 : S^2 V^\vee &\xrightarrow{\cong} \{\text{symmetric bilinear maps } V \times V \rightarrow \mathbb{k}\}, \\ \phi_3 : S^2 V^\vee &\xrightarrow{\cong} \text{Hom}(S^2 V, \mathbb{k}).\end{aligned}$$

Assume $\xi_1, \xi_2 \in V^\vee$ and $v_1, v_2 \in V$.

- (a) Describe ϕ_1, ϕ_2, ϕ_3 .
- (b) Find a formula for $\phi_2(\xi_1 \odot \xi_2)(v_1, v_2)$.
- (c) Find a formula for $\phi_3(\xi_1 \odot \xi_2)(v_1 \odot v_2)$.
- (d) Let $\{e_1, \dots, e_n\}$ be a basis for V and $v \in V$. The evaluation map $\text{ev}_v : \mathbb{k}[x_1, \dots, x_n]^2 \rightarrow \mathbb{k}$ is the map

$$\text{ev}_v(f) = f(a_1, \dots, a_n),$$

for $f \in \mathbb{k}[x_1, \dots, x_n]^2$ and $v = \sum_{i=1}^n a_i e_i$. Find a formula for $\text{ev}_v(\phi_1(\xi_1 \odot \xi_2))$.

6. Suppose $\dim V = n$. Recall that one has isomorphisms

$$\begin{aligned}\psi_1 : \Lambda^2 V^\vee &\xrightarrow{\cong} \{\text{skew-symmetric bilinear maps } V \times V \rightarrow \mathbb{k}\}, \\ \psi_2 : \Lambda^2 V^\vee &\xrightarrow{\cong} \text{Hom}(\Lambda^2 V, \mathbb{k}).\end{aligned}$$

Assume $\xi_1, \xi_2 \in V^\vee$ and $v_1, v_2 \in V$.

- (a) Describe ψ_1 and ψ_2 .
- (b) Find a formula for $\psi_1(\xi_1 \wedge \xi_2)(v_1, v_2)$.
- (c) Find a formula for $\psi_2(\xi_1 \wedge \xi_2)(v_1 \wedge v_2)$.