Advanced Linear Algebra — Homework 6 (Fall 2022)

1. Let $\mathbb{k}[x_1,\dots,x_k]^n$ be the vector space of homogeneous polynomials of degree n in k variables, i.e.,

$$\mathbb{k}[x_1, \dots, x_k]^n = \text{span}\{x_1^{i_1} x_2^{i_2} \dots x_k^{i_i} \in \mathbb{k}[x_1, \dots, x_k] \mid i_1 + \dots + i_k = n\}.$$

- (a) Show that $\bigoplus_{p+q=n} \mathbb{k}[x]^p \otimes \mathbb{k}[x]^q \cong \mathbb{k}[x,y]^n$.
- (b) Show that $k[x] \otimes k[x] \cong k[x, y]$.
- (c) Show that $\mathbb{k}[x_1, \dots, x_k] \otimes \mathbb{k}[x_1, \dots, x_l] \cong \mathbb{k}[x_1, \dots, x_{k+l}]$.
- 2. Let $A = \mathbb{k}[x_1, \dots, x_k]$ be the space of polynomials in k variables.
 - (a) Show that there exists a unique linear map $\mu: A \otimes A \to A$ such that $\mu(f \otimes g) = fg$ for any $f, g \in A$.
 - (b) Let $\Delta^* : \mathbb{k}[x_1, \dots, x_{2k}] \to \mathbb{k}[x_1, \dots, x_k]$ be the linear map

$$\Delta^*(f)(x_1, \dots, x_k) = f(x_1, \dots, x_k, x_1, \dots, x_k).$$

Show that there exists an isomorphism $\phi: A \otimes A \stackrel{\cong}{\longrightarrow} \Bbbk[x_1, \cdots, x_{2k}]$ such that $\mu = \Delta^* \circ \phi$.

- (c) Show that $\mu \circ (\mu \otimes id_A) = \mu \circ (id_A \otimes \mu)$ as maps $A \otimes A \otimes A \to A$.
- (d) Let $\mu^i:A^{\otimes i+1}\to A$ be the maps defined inductively by

$$\mu^1 = \mu, \qquad \mu^i = \mu \circ (\mu^{i-1} \otimes \mathrm{id}_A).$$

Show that $\mu \circ (\mu^i \otimes \mu^j) = \mu^{i+j+1}$.

3. Let $\{\xi_1, \dots, \xi_n\}$ be a linearly independent set in V^{\vee} . Show that there exist $v_1, \dots, v_n \in V$ such that

$$\xi_i(v_j) = \delta_{i,j} = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{if } i \neq j. \end{cases}$$

4. Let V and W be vector spaces. Recall that there exists a unique linear map

$$\Phi: V^{\vee} \otimes W \to \operatorname{Hom}(V, W)$$

which maps $\xi \otimes w$ to $\langle - | \xi \rangle \cdot w$, and the map Φ is one-to-one.

- (a) Suppose dim $V < \infty$. Show that the linear map Φ is an isomorphism.
- (b) Find vector spaces V and W so that the linear map Φ is NOT onto.
- 5. Suppose W = V in the previous question.
 - (a) Show that there exists a unique linear map $E: V^{\vee} \otimes V \to \mathbb{k}$ with the property $E(\xi \otimes v) = \xi(v) = \langle v | \xi \rangle$.
 - (b) Assume V is finite-dimensional. Show that $\operatorname{tr} \circ \Phi = E$ as maps $V^{\vee} \otimes V \to \mathbb{k}$, where $\operatorname{tr} : \operatorname{Hom}(V, V) \to \mathbb{k}$ maps a linear map to its trace. (So one can say "trace $\cong \langle | \rangle$.")