Advanced Linear Algebra - Homework 5 (Fall 2022)

Suppose V and W are vector spaces over a field \mathbb{k}, unless otherwise stated.

1. Let $x \in V \otimes W$. Show that there exist linearly independent vectors $v_{1}, \cdots, v_{n} \in V$ such that

$$
x=\sum_{i=1}^{n} v_{i} \otimes w_{i}
$$

for some $w_{1}, \cdots, w_{n} \in W$.
2. Let $\left\{e_{1}, \cdots, e_{n}\right\}$ be a basis for V. Show that for each $x \in V \otimes W$, there exist unique $w_{1}, \cdots, w_{n} \in W$ such that

$$
x=\sum_{i=1}^{n} e_{i} \otimes w_{i}
$$

3. Let e_{1}, e_{2} be the standard basis for \mathbb{R}^{2}.
(a) Find $v, w \in \mathbb{R}^{2}$ with the property

$$
v \otimes w=2 e_{1} \otimes e_{1}+3 e_{1} \otimes e_{2}+4 e_{2} \otimes e_{1}+6 e_{2} \otimes e_{2}
$$

(b) Show that

$$
v \otimes w \neq e_{1} \otimes e_{1}+e_{2} \otimes e_{2}
$$

for any $v, w \in \mathbb{R}^{2}$.
4. Let V be a real vector space. By considering \mathbb{C} as a 2 -dimensional real vector space, one has the tensor product $\mathbb{C} \otimes_{\mathbb{R}} V$.
(a) Show that any element in $\mathbb{C} \otimes_{\mathbb{R}} V$ is of the form $1 \otimes v_{1}+i \otimes v_{2}$ (or $v_{1}+i v_{2}$ for simplicity), where $i=\sqrt{-1}$.
(b) Show that $\mathbb{C} \otimes_{\mathbb{R}} V \cong V \oplus V$.
(c) Show that $\mathbb{C} \otimes_{\mathbb{R}} V$ is a vector space over \mathbb{C} whose scalar multiplication is given by

$$
(x+i y) \cdot\left(v_{1}+i v_{2}\right)=\left(x v_{1}-y v_{2}\right)+i\left(y v_{1}+x v_{2}\right)
$$

for $x, y \in \mathbb{R}, v_{1}, v_{2} \in V$. The complex vector space $\mathbb{C} \otimes_{\mathbb{R}} V$ is called the complexification of V.
(d) Show that $\operatorname{dim}_{\mathbb{R}}(V)=\operatorname{dim}_{\mathbb{C}}\left(\mathbb{C} \otimes_{\mathbb{R}} V\right)$.
(e) Let $f: V \rightarrow \underset{\sim}{\rightarrow} W$ be a \mathbb{R}-linear map. Show that there exists a unique \mathbb{C}-linear map $\tilde{f}: \mathbb{C} \otimes_{\mathbb{R}} V \rightarrow \mathbb{C} \otimes_{\mathbb{R}} W$ such that $\tilde{f}(1 \otimes v)=1 \otimes f(v)$ for all $v \in V$. The map \tilde{f} is sometimes referred as the complexification of f.
5. Let \tilde{V} be a vector space, and $\tilde{\varphi}: V \times W \rightarrow \tilde{V}$ be a bilinear map. Suppose ($\tilde{V}, \tilde{\varphi})$ satisfies the universal property: for any bilinear map $f: V \times W \rightarrow W^{\prime}$, there exists a unique linear map $\tilde{f}: \tilde{V} \rightarrow W^{\prime}$ such that $f=\tilde{f} \circ \tilde{\varphi}$. Show that $\tilde{V} \cong V \otimes W$.

