Advanced Linear Algebra - Homework 3 (Fall 2022)

1. What is the shape (or dimension) of the solution set of the following linear system?

$$
\left\{\begin{aligned}
x_{1}+2 x_{2}+3 x_{3}+x_{4} & =0 \\
4 x_{1}+5 x_{2}+6 x_{3}-x_{4} & =0 \\
7 x_{1}+8 x_{2}+9 x_{3} & =0
\end{aligned}\right.
$$

2. Let W be a subspace of V. Then we have the inclusion map $\iota: W \hookrightarrow V$ and the projection map $\pi: V \rightarrow V / W$.
(a) Show that $\operatorname{ker} \pi=\operatorname{im} \iota, \operatorname{ker} \iota=0$ and $\operatorname{im} \pi=V / W$. That is, the sequence

$$
0 \longrightarrow W \longleftrightarrow V \xrightarrow{\iota} V / W \longrightarrow 0
$$

is a short exact sequence.

(b) Show that there exists a linear map $j: V / W \rightarrow V$ such that $\pi \circ j=\mathrm{id}_{V / W}$.
(c) Show that there exists a linear map $p: V \rightarrow W$ such that $p \circ \iota=\mathrm{id}_{W}$.
(d) Show that a choice of $j: V / W \rightarrow V, \pi \circ j=\operatorname{id}_{V / W}$, is equivalent to a choice of $p: V \rightarrow W$, $p \circ \iota=\mathrm{id}_{W}$. (Such a choice is called a splitting of the short exact sequence.)
(e) Show that a choice of $j: V / W \rightarrow V, \pi \circ j=\mathrm{id}_{V / W}$, (or, equivalently, a choice of $p: V \rightarrow W$, $p \circ \iota=\mathrm{id}_{W}$) determines an isomorphism

$$
V \stackrel{\cong}{\rightrightarrows} W \oplus V / W, \quad v \mapsto(p(v), \pi(v)) .
$$

In particular, $V \cong W \oplus V / W$, and $\operatorname{dim}(V / W)=\operatorname{dim} V-\operatorname{dim} W$.
3. Let V_{1}, \cdots, V_{k} and W be vector spaces. Prove that k-linear maps $V_{1} \times \cdots \times V_{k} \rightarrow W$ forms a vector space by the operation

$$
(a f+b g)\left(v_{1}, \cdots, v_{k}\right)=a f\left(v_{1}, \cdots, v_{k}\right)+b g\left(v_{1}, \cdots, v_{k}\right)
$$

4. Let V_{1}, V_{2}, V_{3} and W be finite-dimensional vector spaces. Let

$$
\beta_{p}=\left\{v_{1}^{p}, \cdots, v_{n_{p}}^{p}\right\} \quad \text { and } \quad \gamma=\left\{w_{1}, \cdots, w_{m}\right\}
$$

be bases for V_{p} and W, respectively.
(a) Show that a multilinear map

$$
f: V_{1} \times V_{2} \times V_{3} \rightarrow W
$$

is uniquely determined by the vectors

$$
f\left(v_{i_{1}}^{1}, v_{i_{2}}^{2}, v_{i_{3}}^{3}\right), \quad 1 \leq i_{p} \leq n_{p}, p=1,2,3
$$

in W.
(b) Assume $f_{i_{1}, i_{2}, i_{3}}^{j} \in \mathbb{k}$ are the numbers such that

$$
f\left(v_{i_{1}}^{1}, v_{i_{2}}^{2}, v_{i_{3}}^{3}\right)=\sum_{j=1}^{m} f_{i_{1}, i_{2}, i_{3}}^{j} w_{j} .
$$

Show that the map

$$
\begin{aligned}
\left\{\text { multilinear maps } V_{1} \times V_{2} \times V_{3}\right. & \rightarrow W\} \\
f & \longmapsto\left\{\left(a_{i_{1}, i_{2}, i_{3}}^{j}\right)_{\substack{1 \leq j \leq m \\
1 \leq i_{p} \leq n_{p}}} \mid a_{i_{1}, i_{2}, i_{3}}^{j} \in \mathbb{k}\right\}, \\
& \longmapsto\left(f_{i_{1}, i_{2}, i_{3}}^{j}\right)_{\substack{1 \leq j \leq m \\
1 \leq i_{p} \leq n_{p}}},
\end{aligned}
$$

is an isomorphism of vector spaces.

