Advanced Linear Algebra — Homework 1 (Fall 2022)

- 1. Let V be a vector space over a field k. Prove that a subset $\beta = {\vec{v}_{\lambda}}_{\lambda \in \Lambda}$ of V (not necessarily a finite set) is a basis for V if and only if for each $\vec{v} \in V$, there exists a unique function $\Lambda \to \Bbbk : \lambda \mapsto a_{\lambda}$ such that
 - $a_{\lambda} \neq 0$ only for a finite number of indexes $\lambda \in \Lambda$, and
 - $\vec{v} = \sum_{\lambda \in \Lambda} a_{\lambda} \vec{v}_{\lambda}.$
- 2. Let $\beta = {\vec{v_1}, \dots, \vec{v_n}}$ and $\gamma = {\vec{w_1}, \dots, \vec{w_n}}$ be two bases for a vector space V. Show that there exists an invertible matrix A such that

$$[\vec{v}]_{\gamma} = A[\vec{v}]_{\beta}$$

for all $\vec{v} \in V$.

- 3. Let $T: V \to W$ be a linear map between vector spaces. Prove that T is an isomorphism if and only if T is one-to-one and onto.
- 4. Prove that the relation "isomorphic" is an equivalence relation.
- 5. Let $T, T': V \to W$ be linear maps between vector spaces, and $\beta = {\vec{v}_{\lambda}}_{\lambda \in \Lambda}$ be a basis for V.
 - (a) Show that T = T' if and only if $T(\vec{v}_{\lambda}) = T'(\vec{v}_{\lambda})$ for all $\lambda \in \Lambda$.
 - (b) Given an arbitrary map $f : \Lambda \to W : \lambda \mapsto \vec{w}_{\lambda}$ (not necessarily linear), prove that there exists a unique linear map $T_f : V \to W$ such that $T_f(\vec{v}_{\lambda}) = \vec{w}_{\lambda}$ for all $\lambda \in \Lambda$.
 - (c) Prove that two vector spaces V and W are isomorphic if and only if dim $V = \dim W$.

6. Let
$$\vec{v}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \vec{v}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \vec{w}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \vec{w}_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \vec{w}_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$$

- (a) Show that $\beta = \{\vec{v}_1, \vec{v}_2\}$ is a basis for \mathbb{R}^2 .
- (b) Show that $\gamma = \{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$ is a basis for \mathbb{R}^3 .
- (c) Find the matrix representation $[T]^{\beta}_{\gamma}$ of the linear map $T: \mathbb{R}^2 \to \mathbb{R}^3$,

$$T\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}x+y\\2x\\x-y\end{pmatrix}$$

with respect to β and γ .

(d) Find invertible matrices $A \in GL_2(\mathbb{R}), B \in GL_3(\mathbb{R})$ such that

$$[T]^{\beta}_{\gamma} = B \begin{pmatrix} 1 & 1 \\ 2 & 0 \\ 1 & -1 \end{pmatrix} A.$$

7. Let

 $V_n = \{ p(x) \in \mathbb{R}[x] \mid p(x) \text{ is of the form } a_0 + a_1 x + \dots + a_n x^n \}.$

Let $a \in \mathbb{R}$ be a fixed number, and let

$$D_n: V_n \to V_{n-1}, \ D_n(p) := \frac{dp}{dx},$$
$$I_{a,n}: V_n \to V_{n+1}, \ I_{a,n}(p) := \int_a^x p(t) \, dt,$$
$$I'_n: V_n \to V_{n+1}, \ I'_n \Big(\sum_{i=0}^n a_i x^i\Big) := 1 + \sum_{i=0}^n \frac{a_i}{i+1} \, x^{i+1}.$$

- (a) Show that, for each nonnegative integer n, V_n is a vector space of dimension n + 1.
- (b) Show that, for each nonnegative integer n, D_n and $I_{a,n}$ are linear, but I'_n is not.
- (c) Are D_n and $I_{a,n}$ isomorphisms? Are $D_n, I_{a,n}$ and I'_n one-to-one or onto? Explain your answers.
- (d) Let $\beta_n = \{1, x, \dots, x^n\}$ be the standard basis for V_n . Find the matrices $[D_n]_{\beta_{n-1}}^{\beta_n}$ and $[I_{a,n}]_{\beta_{n+1}}^{\beta_n}$.

(e) Show that

$$\gamma_n = \{1, 1+x, 1+x+x^2, \cdots, 1+x+\dots+x^n\}$$

is a basis for V_n .

(f) Find the matrix A_n such that

$$[p]_{\gamma_n} = A_n[p]_{\beta_n}$$

for any $p \in V_n$.

- (g) Find the matrix representations $[D_n]_{\beta_{n-1}}^{\gamma_n}$, $[D_n]_{\gamma_{n-1}}^{\gamma_n}$, and $[I_{a,n}]_{\gamma_{n+1}}^{\beta_n}$.
- (h) Find the matrix representations $[D_{n+1} \circ I_{a,n}]^{\beta_n}_{\gamma_n}$, $[D_{n+1} \circ I_{a,n}]^{\gamma_n}_{\beta_n}$ and $[I_{a,n-1} \circ D_n]^{\gamma_n}_{\gamma_n}$.