Advanced Linear Algebra - Homework 1 (Fall 2022)

1. Let V be a vector space over a field \mathbb{k}. Prove that a subset $\beta=\left\{\vec{v}_{\lambda}\right\}_{\lambda \in \Lambda}$ of V (not necessarily a finite set) is a basis for V if and only if for each $\vec{v} \in V$, there exists a unique function $\Lambda \rightarrow \mathbb{k}: \lambda \mapsto a_{\lambda}$ such that

- $a_{\lambda} \neq 0$ only for a finite number of indexes $\lambda \in \Lambda$, and
- $\vec{v}=\sum_{\lambda \in \Lambda} a_{\lambda} \vec{v}_{\lambda}$.

2. Let $\beta=\left\{\vec{v}_{1}, \cdots, \vec{v}_{n}\right\}$ and $\gamma=\left\{\vec{w}_{1}, \cdots, \vec{w}_{n}\right\}$ be two bases for a vector space V. Show that there exists an invertible matrix A such that

$$
[\vec{v}]_{\gamma}=A[\vec{v}]_{\beta}
$$

for all $\vec{v} \in V$.
3. Let $T: V \rightarrow W$ be a linear map between vector spaces. Prove that T is an isomorphism if and only if T is one-to-one and onto.
4. Prove that the relation "isomorphic" is an equivalence relation.
5. Let $T, T^{\prime}: V \rightarrow W$ be linear maps between vector spaces, and $\beta=\left\{\vec{v}_{\lambda}\right\}_{\lambda \in \Lambda}$ be a basis for V.
(a) Show that $T=T^{\prime}$ if and only if $T\left(\vec{v}_{\lambda}\right)=T^{\prime}\left(\vec{v}_{\lambda}\right)$ for all $\lambda \in \Lambda$.
(b) Given an arbitrary map $f: \Lambda \rightarrow W: \lambda \mapsto \vec{w}_{\lambda}$ (not necessarily linear), prove that there exists a unique linear map $T_{f}: V \rightarrow W$ such that $T_{f}\left(\vec{v}_{\lambda}\right)=\vec{w}_{\lambda}$ for all $\lambda \in \Lambda$.
(c) Prove that two vector spaces V and W are isomorphic if and only if $\operatorname{dim} V=\operatorname{dim} W$.
6. Let $\vec{v}_{1}=\binom{1}{-1}, \vec{v}_{2}=\binom{1}{1}, \vec{w}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right), \vec{w}_{2}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right), \vec{w}_{3}=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$.
(a) Show that $\beta=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ is a basis for \mathbb{R}^{2}.
(b) Show that $\gamma=\left\{\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}\right\}$ is a basis for \mathbb{R}^{3}.
(c) Find the matrix representation $[T]_{\gamma}^{\beta}$ of the linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$,

$$
T\binom{x}{y}=\left(\begin{array}{c}
x+y \\
2 x \\
x-y
\end{array}\right)
$$

with respect to β and γ.
(d) Find invertible matrices $A \in \mathrm{GL}_{2}(\mathbb{R}), B \in \mathrm{GL}_{3}(\mathbb{R})$ such that

$$
[T]_{\gamma}^{\beta}=B\left(\begin{array}{rr}
1 & 1 \\
2 & 0 \\
1 & -1
\end{array}\right) A
$$

7. Let

$$
V_{n}=\left\{p(x) \in \mathbb{R}[x] \mid p(x) \text { is of the form } a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right\}
$$

Let $a \in \mathbb{R}$ be a fixed number, and let

$$
\begin{gathered}
D_{n}: V_{n} \rightarrow V_{n-1}, D_{n}(p):=\frac{d p}{d x}, \\
I_{a, n}: V_{n} \rightarrow V_{n+1}, I_{a, n}(p):=\int_{a}^{x} p(t) d t \\
I_{n}^{\prime}: V_{n} \rightarrow V_{n+1}, I_{n}^{\prime}\left(\sum_{i=0}^{n} a_{i} x^{i}\right):=1+\sum_{i=0}^{n} \frac{a_{i}}{i+1} x^{i+1} .
\end{gathered}
$$

(a) Show that, for each nonnegative integer n, V_{n} is a vector space of dimension $n+1$.
(b) Show that, for each nonnegative integer n, D_{n} and $I_{a, n}$ are linear, but I_{n}^{\prime} is not.
(c) Are D_{n} and $I_{a, n}$ isomorphisms? Are $D_{n}, I_{a, n}$ and I_{n}^{\prime} one-to-one or onto? Explain your answers.
(d) Let $\beta_{n}=\left\{1, x, \cdots, x^{n}\right\}$ be the standard basis for V_{n}. Find the matrices $\left[D_{n}\right]_{\beta_{n-1}}^{\beta_{n}}$ and $\left[I_{a, n}\right]_{\beta_{n+1}}^{\beta_{n}}$.
(e) Show that

$$
\gamma_{n}=\left\{1,1+x, 1+x+x^{2}, \cdots, 1+x+\cdots+x^{n}\right\}
$$

is a basis for V_{n}.
(f) Find the matrix A_{n} such that

$$
[p]_{\gamma_{n}}=A_{n}[p]_{\beta_{n}}
$$

for any $p \in V_{n}$.
(g) Find the matrix representations $\left[D_{n}\right]_{\beta_{n-1}}^{\gamma_{n}},\left[D_{n}\right]_{\gamma_{n-1}}^{\gamma_{n}}$, and $\left[I_{a, n}\right]_{\gamma_{n+1}}^{\beta_{n}}$.
(h) Find the matrix representations $\left[D_{n+1} \circ I_{a, n}\right]_{\gamma_{n}}^{\beta_{n}},\left[D_{n+1} \circ I_{a, n}\right]_{\beta_{n}}^{\gamma_{n}}$ and $\left[I_{a, n-1} \circ D_{n}\right]_{\gamma_{n}}^{\gamma_{n}}$.

