Advanced Linear Algebra - Homework 12 (Fall 2022)

1. Let V be a vector space over \mathbb{R}. Suppose V is equipped with an inner product $\langle-,-\rangle$. Let $\|v\|=\sqrt{\langle v, v\rangle}$ for $v \in V$. Show that $\|-\|$ is a norm on V with the property

$$
\|v+w\|^{2}+\|v-w\|^{2}=2\|v\|^{2}+2\|w\|^{2} .
$$

This equality is called the parallelogram law.
2. Let V be a normed vector space over \mathbb{R} with the norm $\|-\|$. Assume the parallelogram law is satisfied. Show that there exists an inner product $\langle-,-\rangle$ on V such that $\|v\|=\sqrt{\langle v, v\rangle}$.
3. Find a norm which is not induced by an inner product.
4. Prove that the operator norm

$$
\|A\|_{\text {op }}=\sup _{\substack{\|v\|=1, v \in \mathbb{C}^{n}}}\|A v\|
$$

is a norm on $\mathrm{M}_{n}(\mathbb{C})$ with the property

$$
\|A B\|_{\mathrm{op}} \leq\|A\|_{\mathrm{op}} \cdot\|B\|_{\mathrm{op}}, \quad \forall A, B \in \mathrm{M}_{n}(\mathbb{C})
$$

5. Compute $\exp (t A)$, where
(a) $A=\left(\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right)$.
(b) $A=\left(\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$.
(c) $A=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right)$.
6. Find the general solution of the differential equation

$$
y^{(4)}-10 y^{\prime \prime}+25 y=0
$$

7. Let $A \in \mathrm{M}_{n}(\mathbb{C})$. Show that $\operatorname{det}\left(e^{A}\right)=e^{\operatorname{tr}(A)}$.
