Advanced Linear Algebra — Homework 12 (Fall 2022)

1. Let V be a vector space over \mathbb{R} . Suppose V is equipped with an inner product $\langle -, - \rangle$. Let $||v|| = \sqrt{\langle v, v \rangle}$ for $v \in V$. Show that ||-|| is a norm on V with the property

$$||v + w||^2 + ||v - w||^2 = 2||v||^2 + 2||w||^2.$$

This equality is called the **parallelogram law**.

- 2. Let V be a normed vector space over \mathbb{R} with the norm $\|-\|$. Assume the parallelogram law is satisfied. Show that there exists an inner product $\langle -, - \rangle$ on V such that $\|v\| = \sqrt{\langle v, v \rangle}$.
- 3. Find a norm which is not induced by an inner product.
- 4. Prove that the operator norm

$$||A||_{\text{op}} = \sup_{\substack{\|v\|=1, \\ v \in \mathbb{C}^n}} ||Av|$$

is a norm on $\mathcal{M}_n(\mathbb{C})$ with the property

$$||AB||_{\rm op} \le ||A||_{\rm op} \cdot ||B||_{\rm op}, \qquad \forall A, B \in \mathcal{M}_n(\mathbb{C}).$$

5. Compute $\exp(tA)$, where

(a)
$$A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
.
(b) $A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.
(c) $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$.

6. Find the general solution of the differential equation

$$y^{(4)} - 10y'' + 25y = 0.$$

7. Let $A \in M_n(\mathbb{C})$. Show that $\det(e^A) = e^{\operatorname{tr}(A)}$.