Advanced Linear Algebra - Homework 10 (Fall 2022)

Let V and W be vector spaces over a field \mathbb{k}.

1. Let M be a module over a commutative ring R.
(a) For $x \in M$, show that

$$
I_{x}=\{r \in R \mid r \cdot x=0\}
$$

is an ideal of R. If $I_{x} \neq 0, x$ is said to be a torsion element of M.
(b) Suppose R is an integral domain, i.e., $r s=0$ in R implies $r=0$ or $s=0$. Show that the set T of torsion elements of M is a submodule of M. (T is called the torsion submodule.)
(c) Show that (b) may be false if R is not an integral domain.
2. Let M be a module over a commutative ring R.
(a) Show that any intersection of submodules of M is still a submodule of M.
(b) Let S be an arbitrary subset of M. Let N be the intersection of all the submodules of M which contains S. Show that S generates N and that N is the smallest submodule containing S. This submodule N is called the submodule generated by S.
3. Let \mathbb{Z}_{n} be the quotient \mathbb{Z}-module $\mathbb{Z} / n \mathbb{Z}$, and \mathbb{Q} be the \mathbb{Z}-module of rational numbers.
(a) Show that $\mathbb{Z}_{m} \otimes_{\mathbb{Z}} \mathbb{Z}_{n} \cong \mathbb{Z}_{c}$, where c is the greatest common factor of m and n.
(b) Let M be a \mathbb{Z}-module whose torsion submodule is itself M. Show that $M \otimes_{\mathbb{Z}} \mathbb{Q}=0$.
(c) Show that $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q}$.
4. State the definition of quotient algebra. Show that the quotient algebra is an algebra, and the natural $\operatorname{map} A \rightarrow A / I$ is a surjective algebra morphism.
5. Show that any intersection of ideals of an algebra is still an ideal.
6. Recall that the symmetric algebra $S V$ is the quotient algebra

$$
S V=T V /\langle\{x \otimes y-y \otimes x \mid x, y \in V\}\rangle
$$

We denote by $S^{k} V$ the image of $T^{k} V$ under the quotient map and by \odot the induced product in $S V$.
(a) Show that

$$
S^{k} V=\overbrace{V \otimes \cdots \otimes V}^{k \text { times }} / \operatorname{span}\left\{v_{1} \otimes \cdots \otimes\left(v_{i} \otimes v_{i+1}-v_{i+1} \otimes v_{i}\right) \otimes \cdots v_{k}\right\} .
$$

(b) Show that $S V=\bigoplus_{k=0}^{\infty} S^{k} V$.
7. Construct an isomorphism $\mathbb{k}\left[x_{1}, \cdots, x_{n}\right] \cong S\left(\mathbb{k}^{n}\right)^{\vee}$ which sends the subspace of polynomials of degree k to $S^{k}\left(\mathbb{k}^{n}\right)^{\vee}$.
8. Recall the exterior algebra ΛV is the quotient algebra

$$
\Lambda V=T V /\langle\{x \otimes y+y \otimes x \mid x, y \in V\}\rangle
$$

We denote by $\Lambda^{k} V$ the image of $T^{k} V$ under the quotient map and by \wedge the induced product in ΛV.
(a) Show that

$$
\Lambda^{k} V=\overbrace{V \otimes \cdots \otimes V}^{k \text { times }} / \operatorname{span}\left\{v_{1} \otimes \cdots \otimes\left(v_{i} \otimes v_{i+1}+v_{i+1} \otimes v_{i}\right) \otimes \cdots v_{k}\right\}
$$

(b) Show that $\Lambda V=\bigoplus_{k=0}^{\infty} \Lambda^{k} V$.
(c) Show that if $\operatorname{dim} V=n$, then $\operatorname{dim} \Lambda V=2^{n}$.
9. Suppose $\operatorname{dim} V<\infty$. Let α be a nonzero element in $\Lambda^{1} V$, and $\gamma \in \Lambda^{k} V$. Show that $\alpha \wedge \gamma=0$ if and only if $\gamma=\alpha \wedge \beta$ for some $\beta \in \Lambda^{k-1} V$.

