Complex Analysis 4/25

Recall

• 20 is removable singularity of f if f analytic at z_0 sit $f \equiv g$ in a delated nool of z_0 eg. f(z) = g sing f(z) = g

pole of order k: $f = \frac{A}{3}$, $A(z_0) \neq 0$, B has zero at z_0 of order z_0 eg. $g(z) = \frac{z}{(z-3)^2}$ has a pole of order z_0 at z_0

· essential singularity: neither removable singularity nor pole

e.g. exp(/z) has an essential singularity

e^{1/2} (cos (in ½ + i sim (im½)) ⇒ range

at 0.

Removable singularity

Thm 9.3 (Rieman's Principle of Removable Singularity)

If f has an isolated singularity at z_0 and if $\lim_{z \to z_0} (z - z_0) f(z) = 0$, then the

singularity is removable * Let $(Z-Z_0)$ f(Z) $Z \neq Z_0$ $h(Z) = \begin{cases} (Z-Z_0) + (Z_0) & Z \neq Z_0 \\ 0 & Z = Z_0 \end{cases}$ ⇒ h is analytic in a deleted nbd of z. So h is continuous, analytic except a point in a nood Zo (Thm 7.7) $\Rightarrow h \text{ is analytic at } Z_{\circ}$ $\Rightarrow g(z) = \begin{cases} \frac{h(z) - h(z_{\circ})}{z - z_{\circ}} & z = z_{\circ} \\ h'(z_{\circ}) & z = z_{\circ} \end{cases}$ is also analytic at zo, and 8=f in a deleted nbd of 20 Gor 9.4 If f is bounded in a delated upod of an isolated singularity. Then the singularity is removable. (bold \Rightarrow (z-2) +(z) \Rightarrow 0 as z+2.) Pole Thm 9.5

If f' is analytic in a deleted nool of z_8 and if $\exists k \in \mathbb{N}$ s.t.

lim (z-z) + 0 but

lim (z-Z) = 0, z>z

then f has a pole of order k at 25.

If we set

 $S(z) = \begin{cases} (z-z)^{k+1} f(z), & z = z, \\ 0, & z = z, \end{cases}$

then g is analytic at Zo (Thm 7.7).

Furthermore, since g(Za) =0,

 $A(z) = \begin{cases} \frac{g(z)}{z-z_0} = (z-z_0)^k f(z) \\ z+z_0 \end{cases}$

 $S(Z_0) \neq 0$ by assumption $Z = Z_0$

is analytic at zo.

Note that

 $\frac{1}{2}(S) = \frac{(S-S)_F}{V(S)}$ $S \neq S$

A(20)+0

=> f has a pole of order k at 7.

Kemark By Thm 9.3, Thm 9.3, " # pole of orolor \$ 602" For example, o of 1fæl≤ Vizi in a deloted nbd of 0 > then (zfz) < (z/1/2) = 1/21 ->0 \Rightarrow by Thm 9.3, 0 is removable (# pole of order $\frac{1}{2}$)

(2) if $|f(z)| \le \frac{1}{|z|^{\frac{4}{2}}}$ in a deleted hold of 0 then $|z^2f(z)| \leq \frac{1}{\sqrt{|z|}}$ \Rightarrow Zf(z) = A(z) in a deleted nbd of 0 \Rightarrow $f(z) = \frac{A(z)}{z^2}$ has a pole at 0

Essential singularity

By $\frac{\text{Thm 9.3}}{\text{And}}$ and $\frac{\text{Thm 9.5}}{\text{Thm 9.5}}$, if f has an essential singularity at z_0 , then $\frac{1}{2}$ $\frac{$

However, fcz) to as z > 20. In fast, we have Casorati - Weierstrass Thm (Thm 9.6) If f is analytic in a delated had D of Zo and has an essential singularity at Z_0 , then the rappe R = f(D)is dense in C Assume R is not dense Then I well, 8>0 sit, D(w) B) n R= Ø 12(5)-101 >2 A SED By $\frac{\cos 9.4}{\sin -\omega}$, $\frac{1}{\sin -\omega}$ has (at most) a removable singularity at $z=z_0$ ⇒ 18 analytic in Duszof st

Remark

In fact, there is a stronger thm (Great Picarolis Thm): f(D)=R=C or $C-\{a\ point\}$

Laurent expansions

Def 9.7

Ne say $\sum_{k=-\infty}^{\infty} u_k = L$ if both $\sum_{k=1}^{\infty} u_k$ and $\sum_{k=1}^{\infty} u_{-k}$ converge and $\sum_{k=1}^{\infty} u_{-k} + \sum_{k=1}^{\infty} u_{-k} = L$ We say $\sum_{k=-\infty}^{\infty} u_k$ is convergent if

E ux and E ux are convergent (resp. converge uniformly)

Thm 9.8

 $f(z) = \sum_{k=-\infty}^{\infty} a_k z^k$ is convergent and analytic in the domain

$$D = \{ z \in C : R_1 < |z| < R_2 \}$$
where
$$R_1 = \lim_{k \to \infty} |a_{-k}|^k$$

$$R_2 = \lim_{k \to \infty} |a_{k}|^k$$

$$\text{Derives}$$

$$\text{domain of convergence}$$

$$f_1(z) = \sum_{k=0}^{\infty} a_k z^k$$

$$|z| < \lim_{k \to \infty} |a_k|^k = R_2$$

$$C(z) = \sum_{k=0}^{-1} a_k z^k$$

$$f_{i}(z) = \sum_{k=0}^{\infty} \alpha_{k} z^{k}$$

$$f_{i}(z)$$

So, by $\frac{\text{Thm 2.9}}{\text{c}}$, f(z) = f(z) + f(z) is convergent and analytic in D. x

Thm 9.9

If f is analytic in the annulus $A = \{ z \in \mathbb{C} : R_1 < |z| < R_2 \}$ then f has a Laurent expansion, i.e. $\exists a_k \in \mathbb{C} \text{ s.t.}$ $f(z) = \{ z \in A \}$ DF K=-60 TE

O Let Cj: rje, Octo, stj j=1,2

Fix Z with $r_1 < 121 < r_2$. Then

$$\beta(\omega) = \frac{f(\omega) - f(z)}{\omega - z}$$

is analytic in A, and by Homotopy Thing

(also see Example 2, p113),

$$\int_{C_{-}-C_{1}} g(\omega) d\omega = 0$$

$$\Rightarrow \int_{C_2-C_1} \frac{f(\omega)}{\omega-z} d\omega = \int_{C_2-C_1} \frac{f(z)}{\omega-z} d\omega$$

Note that

$$\int_{C_3} \frac{1}{\omega - z} d\omega = 2\pi i \quad (Lemma 5.4)$$

$$\int_{C_1} \frac{1}{\omega - z} d\omega = 0$$

$$\Rightarrow \int_{G-C_1} \frac{f(z)}{\omega - \overline{z}} d\omega = 2\pi i f(z)$$

$$\frac{f(z)}{2\pi i} = \frac{f(\omega)}{\omega - z} d\omega$$

$$- \frac{1}{2\pi i} \int_{C_i} \frac{f(\omega)}{\omega - z} d\omega$$

c.f. Cauchy Integral Formula, p61

Complex Analysis — Homework 6

- 1. Suppose that f is entire and that $|f(z)| \ge |z|^N$ for sufficiently large z. Show that f must be a polynomial of degree at least N.
- 2. Find the maximum and minimum moduli of $z^2 z$ in the disc: $|z| \le 1$.
- 3. Show that if f is analytic and nonconstant on a compact set in \mathbb{C} , then Re f and Im f assume their maxima and minima on the boundary.
- 4. Let D = D(0;1) be the unit disc and $S^1 = \partial D$ be its boundary. Suppose f is nonconstant and analytic in D and continuous in its closure \overline{D} . Show that if $f(S^1) \subset S^1$, then f(D) = D.
- 5. Suppose f is entire and |f|=1 on |z|=1. Prove that there exists $c\in\mathbb{C}$ such that $f(z)=cz^n$ for all $z\in\mathbb{C}$.
- 6. Suppose that f is analytic in the annulus: $1 \le |z| \le 2$, that $|f| \le 1$ for |z| = 1 and that $|f| \le 4$ for |z| = 2. Prove $|f(z)| \le |z|^2$ throughout the annulus.
- 7. (a) Suppose that f is analytic and bounded by 1 in the unit disc with $f(\alpha) \neq 0$ for some $|\alpha| < 1$. Show that there exists a function g, analytic and bounded by 1 in the unit disc, with $|g'(\alpha)| > |f'(\alpha)|$.
 - (b) Find $\max_f |f'(\alpha)|$ where f ranges over the class of analytic functions bounded by 1 in the unit disc, and α is a fixed point with $|\alpha| < 1$.
- 8. Let

$$f(z) = \int_0^1 \frac{\sin zt}{t} \, dt.$$

Show that

(a) f is entire;

(b)
$$f'(z) = \int_0^1 \cos zt \, dt$$
.

- 9. Given an entire function which is real on the real axis and imaginary on the imaginary axis, prove that it is an odd function, i.e., f(z) = -f(-z).
- 10. Suppose f is analytic in |z| < 1, Im z > 0, continuous on $|z| \le 1$, Im z > 0 and real on the semi-circle: |z| = 1, Im z > 0. Show that if we set

$$g(z) = \begin{cases} f(z), & |z| \le 1, \text{Im } z > 0, \\ \overline{f(1/\overline{z})}, & |z| > 1, \text{Im } z > 0, \end{cases}$$

then g is analytic in the upper half plane $\{z \in \mathbb{C} : \text{Im } z > 0\}.$

Complex logarithm

Let $D = \{z \in \mathbb{C} : z \neq 0\}$ be the punctured plane. There is NO function f satisfying the conditions

(i)
$$f$$
 is analytic in D ,

(ii)
$$e^{f(z)} = z$$
 for any $z \in D$.

Proof. Suppose f is a function which satisfies (i) and (ii). Then for each $\theta \in [0, 2\pi]$,

$$e^{f(e^{i\theta})} = e^{u(e^{i\theta})}e^{iv(e^{i\theta})} = e^{i\theta}$$

where $u(z) = \operatorname{Re} f(z)$, $v(z) = \operatorname{Im} f(z)$. Thus,

$$u(e^{i\theta}) = \log|e^{i\theta}| = 0, \qquad v(e^{i\theta}) = \theta + 2k_{\theta}\pi$$

for some $k_{\theta} \in \mathbb{Z}$.

Since f is analytic (and thus continuous) in D, the composition

$$\phi: [0, 2\pi] \xrightarrow{\theta \mapsto e^{i\theta}} S^1 \xrightarrow{v} \mathbb{R}: \theta \mapsto v(e^{i\theta}) = \theta + 2k_{\theta}\pi$$

is continuous, where $S^1=\{z\in\mathbb{C}:|z|=1\}$ is the unit disc. Thus, the map

$$\phi - \mathrm{id} : [0, 2\pi] \to \mathbb{R} : \theta \mapsto k_{\theta}$$

is a continuous function with image in \mathbb{Z} . Since $[0, 2\pi]$ is connected, the image $(\phi - \mathrm{id})([0, 2\pi])$ is a connected subset in \mathbb{Z} . So the set $(\phi - \mathrm{id})([0, 2\pi])$ contains a single point $k_0 \in \mathbb{Z}$. But this implies

$$v(1) = v(e^{i0}) = 0 + 2k_0\pi$$
$$= v(e^{i2\pi}) = 2\pi + 2k_0\pi$$

which is a contradiction.