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10.

Complex Analysis — Homework 6

. Suppose that f is entire and that |f(z)| > |z|"V for sufficiently large z. Show that f must be a polynomial

of degree at least N.
Find the maximum and minimum moduli of 2% — z in the disc: |z| < 1.

Show that if f is analytic and nonconstant on a compact set in C, then Re f and Im f assume their maxima
and minima on the boundary.

Let D = D(0;1) be the unit disc and S! = 0D be its boundary. Suppose f i@nd analytic in
D and continuous in its closure D. Show that if f(S') C S*, then f(D) = D.
Suppose f is entire and |f| =1 on |z] = 1. Prove that there exists ¢ € C such that f(z) = c¢z" for all z € C.

Suppose that f is analytic in the annulus: 1 < |z| < 2, that |f| <1 for |z| = 1 and that |f]| < 4 for |z| = 2.
Prove | f(z)] < |2]? throughout the annulus.

(a) Suppose that f is analytic and bounded by 1 in the unit disc with f(a) # 0 for some |a| < 1. Show
that there exists a function g , analytic and bounded by 1 in the unit disc, with |¢’'(a)] > |f/ ()]
(b) Find max; |f'(a)| where f ranges over the class of analytic functions bounded by 1 in the unit disc,
and « is a fixed point with |a| < 1.
Let .
in zt
£(2) = / sinzt ..
0 t
Show that
(a) f is entire;
1
(b) f'(2) :/ cos zt dt.
0
Given an entire function which is real on the real axis and imaginary on the imaginary axis, prove that it

is an odd function, i.e., f(z) = —f(—2).

Suppose f is analytic in |z] < 1,Imz > 0, continuous on |z| < 1,Imz > 0 and real on the semi-circle:
|z| =1, Imz > 0. Show that if we set

() = f(z), |zl <1,Imz >0,
N f1/z), |zl > 1,Imz > 0,

then g is analytic in the upper half plane {z € C : Im z > 0}.



Complex logarithm

Let D = {z € C: z # 0} be the punctured plane. There is NO function f satisfying the conditions

(i) f is analytic in D,

(ii) ef(*) = 2 for any z € D.
Proof. Suppose f is a function which satisfies (i) and (ii). Then for each @ € [0, 27],

oF(E) — gule™®) giv(e) _ it
where u(z) = Re f(2), v(z) = Im f(z). Thus,
u(e?) = log |e| = 0, v(e?) = 0 + 2kom

for some kg € Z.
Since f is analytic (and thus continuous) in D, the composition

O—et?

¢:[0,27] =5 ST B R0 v(e?) = 0 + 2kyn
is continuous, where S' = {z € C : |z| = 1} is the unit disc. Thus, the map
¢o—id:[0,2r] > R: 60— ke

is a continuous function with image in Z. Since [0, 27] is connected, the image (¢ — id)([0, 27]) is a connected
subset in Z. So the set (¢ — id)([0, 27]) contains a single point ko € Z. But this implies

v(1) = v(e®) = 0+ 2k
= v(e™™) = 27 + 2kom

which is a contradiction. O



