Complex Analysis — Homework 9

1. Evaluate the following integrals

(a)
$$\int_{0}^{\infty} \frac{x^{2}}{(x^{2}+4)^{2}(x^{2}+9)} dx$$
,
(b) $\int_{0}^{\infty} \frac{\sin x}{x(1+x^{2})} dx$,
(c) $\int_{0}^{\infty} \frac{\cos x}{1+x^{2}} dx$,
(d) $\int_{0}^{\infty} \frac{1}{x^{3}+8} dx$,
(e) $\int_{0}^{\infty} \frac{1}{\sqrt[3]{x}(1+x)} dx$,
(f) $\int_{0}^{2\pi} \frac{\sin^{2} x}{5+3\cos x} dx$,
(g) $\int_{0}^{\pi} \frac{dx}{a+\cos x}$, $a \in \mathbb{R}$, $|a| > 1$.

2. Evaluate

$$\int_0^\infty \frac{\sin^2 x}{x^2} \, dx.$$

(Hint: Integrate $(e^{2iz}-1-2iz)/z^2$ around a large semi-circle.)

3. Evaluate

$$\int_0^\infty \frac{1}{1+x^n} \, dx,$$

where $n \geq 2$ is a positive integer.

4. Suppose f = P/Q, where P and Q are polynomials with $\deg Q - \deg P \geq 2$. Show that the sum of the residues of f is zero.

5. Let $\mathbb{R}_{\leq 0}=\{x\in\mathbb{R}:x\leq 0\}\subset\mathbb{C}$ and $U=\mathbb{C}-\mathbb{R}_{\leq 0}.$ Evaluate

$$\int_{\gamma} e^z \log z \, dz,$$

where $\log z$ is the branch in U for which $\log 1 = 0$ and γ is the parabola: $\gamma(t) = 1 - t^2 + it$, $-\infty < t < \infty$.