## Complex Analysis - Homework 8

1. Evaluate
(a) $\int_{|z|=1} \cot z d z$
(b) $\int_{|z|=2} \frac{d z}{(z-4)\left(z^{3}-1\right)} d z$
(c) $\int_{|z|=1} \sin \frac{1}{z} d z$
(d) $\int_{|z|=2} z e^{3 / z} d z$.
2. Prove that for any positive integer $n$, $\operatorname{Res}\left(\left(1-e^{-z}\right)^{-n} ; 0\right)=1$.
3. Suppose that $f$ is entire and that $f(z)$ is real if and only if $z$ is real. Show that $f$ can have at most one zero.
4. Find the number of zeros (counting multiplicities) of
(a) $f_{1}(z)=3 e^{z}-z$ in $|z| \leq 1$.
(b) $f_{2}(z)=\frac{1}{3} e^{z}-z$ in $|z| \leq 1$
(c) $f_{3}(z)=z^{4}-5 z+1$ in $1 \leq|z| \leq 2$
(d) $f_{4}(z)=z^{6}-5 z^{4}+3 z^{2}-1$ in $|z| \leq 1$.
5. Suppose $f$ is analytic inside and on a regular closed curve $\gamma$ and has no zeros on $\gamma$. Show that if $m$ is a positive integer, then

$$
\frac{1}{2 \pi i} \int_{\gamma} z^{m} \frac{f^{\prime}(z)}{f(z)} d z=\sum_{k}\left(z_{k}\right)^{m}
$$

where the sum is taken over all the zeros of $f$ inside $\gamma$.
6. Recall that

$$
\log \left(z^{2}-1\right)=\int_{\sqrt{2}}^{z} \frac{2 \zeta}{\zeta^{2}-1} d \zeta
$$

is analytic in the plane minus the interval $(-\infty, 1]$, and thus so is

$$
\sqrt{z^{2}-1}=\exp \left(\frac{1}{2} \log \left(z^{2}-1\right)\right)
$$

Show that the above $\sqrt{z^{2}-1}$ can be extended to a function which is analytic in the plane minus the interval $[-1,1]$.

