Complex Analysis — Homework 7

- 1. Read the topological definitions of fundamental groups and simply connected spaces.
- 2. Let D be an open connected set in \mathbb{C} . Show that, for any $z_0, z_1 \in D$, there exists a piecewise C^1 curve $\gamma : [0,1] \to D$ such that $\gamma(0) = z_0$ and $\gamma(1) = z_1$.
- 3. A set S is called *star-like* if there exists a point $\alpha \in S$ such that the line segment connecting α and z is contained in S for all $z \in S$. Show that a star-like region is simply connected. In particular, every convex region is simply connected.
- 4. Let $D = \{z \in \mathbb{C} : z \neq 0\}$ be the punctured plane. Show that the curve

$$\gamma: [0,1] \to D, \, \gamma(t) = e^{2\pi t i},$$

is *not* homotopic to a constant curve.

5. Suppose that f is analytic in $D = \{z \in C : |z| < 5, z \neq \pm 2\}$, and that C, C_1, C_2 are the circles

 $C = \{4e^{i\theta} : 0 \le \theta \le 2\pi\}, \quad C_1 = \{-2 + e^{i\theta} : 0 \le \theta \le 2\pi\}, \quad C_2 = \{2 + e^{i\theta} : 0 \le \theta \le 2\pi\}.$

Show that

$$\int_{C} f(z) \, dz = \int_{C_1} f(z) \, dz + \int_{C_2} f(z) \, dz.$$

- 6. Define a function f analytic in the plan minus the non-positive real axis and such that $f(x) = x^x$ on the positive axis. Find f(i), f(-i). Show that $f(\overline{z}) = \overline{f(z)}$ for all z.
- 7. Suppose $f(z) \to \infty$ as $z \to z_0$, where z_0 is an isolated singularity of f. Show that f has a pole at z_0 .
- 8. Suppose $f : \mathbb{C} \to \mathbb{C}$ is an entire one-to-one function. Show that f(z) = az + b for some $a, b \in \mathbb{C}$.
- 9. Suppose f is analytic in the punctured plane $z \neq 0$ and satisfies $|f(z)| \leq \sqrt{|z|} + \frac{1}{\sqrt{|z|}}$. Prove f is constant.
- 10. Classify the singularities of
 - (a) $\frac{1}{z^4 + z^2}$
 - (b) $\cot z$
 - (c) $\csc z$
 - (d) $\frac{\exp(1/z^2)}{z-1}$.