Complex Analysis - Homework 7

1. Read the topological definitions of fundamental groups and simply connected spaces.
2. Let D be an open connected set in \mathbb{C}. Show that, for any $z_{0}, z_{1} \in D$, there exists a piecewise C^{1} curve $\gamma:[0,1] \rightarrow D$ such that $\gamma(0)=z_{0}$ and $\gamma(1)=z_{1}$.
3. A set S is called star-like if there exists a point $\alpha \in S$ such that the line segment connecting α and z is contained in S for all $z \in S$. Show that a star-like region is simply connected. In particular, every convex region is simply connected.
4. Let $D=\{z \in \mathbb{C}: z \neq 0\}$ be the punctured plane. Show that the curve

$$
\gamma:[0,1] \rightarrow D, \gamma(t)=e^{2 \pi t i}
$$

is not homotopic to a constant curve.
5. Suppose that f is analytic in $D=\{z \in C:|z|<5, z \neq \pm 2\}$, and that C, C_{1}, C_{2} are the circles

$$
C=\left\{4 e^{i \theta}: 0 \leq \theta \leq 2 \pi\right\}, \quad C_{1}=\left\{-2+e^{i \theta}: 0 \leq \theta \leq 2 \pi\right\}, \quad C_{2}=\left\{2+e^{i \theta}: 0 \leq \theta \leq 2 \pi\right\}
$$

Show that

$$
\int_{C} f(z) d z=\int_{C_{1}} f(z) d z+\int_{C_{2}} f(z) d z
$$

6. Define a function f analytic in the plan minus the non-positive real axis and such that $f(x)=x^{x}$ on the positive axis. Find $f(i), f(-i)$. Show that $f(\bar{z})=\overline{f(z)}$ for all z.
7. Suppose $f(z) \rightarrow \infty$ as $z \rightarrow z_{0}$, where z_{0} is an isolated singularity of f. Show that f has a pole at z_{0}.
8. Suppose $f: \mathbb{C} \rightarrow \mathbb{C}$ is an entire one-to-one function. Show that $f(z)=a z+b$ for some $a, b \in \mathbb{C}$.
9. Suppose f is analytic in the punctured plane $z \neq 0$ and satisfies $|f(z)| \leq \sqrt{|z|}+\frac{1}{\sqrt{|z|}}$. Prove f is constant.
10. Classify the singularities of
(a) $\frac{1}{z^{4}+z^{2}}$
(b) $\cot z$
(c) $\csc z$
(d) $\frac{\exp \left(1 / z^{2}\right)}{z-1}$.
