Complex Analysis - Homework 6

1. Suppose that f is entire and that $|f(z)| \geq|z|^{N}$ for sufficiently large z. Show that f must be a polynomial of degree at least N.
2. Find the maximum and minimum moduli of $z^{2}-z$ in the disc: $|z| \leq 1$.
3. Show that if f is analytic and nonconstant on a compact set in \mathbb{C}, then $\operatorname{Re} f$ and $\operatorname{Im} f$ assume their maxima and minima on the boundary.
4. Let $D=D(0 ; 1)$ be the unit disc and $S^{1}=\partial D$ be its boundary. Suppose f is nonconstant and analytic in D and continuous in its closure \bar{D}. Show that if $f\left(S^{1}\right) \subset S^{1}$, then $f(D)=D$.
5. Suppose f is entire and $|f|=1$ on $|z|=1$. Prove that there exists $c \in \mathbb{C}$ such that $f(z)=c z^{n}$ for all $z \in \mathbb{C}$.
6. Suppose that f is analytic in the annulus: $1 \leq|z| \leq 2$, that $|f| \leq 1$ for $|z|=1$ and that $|f| \leq 4$ for $|z|=2$. Prove $|f(z)| \leq|z|^{2}$ throughout the annulus.
7. (a) Suppose that f is analytic and bounded by 1 in the unit disc with $f(\alpha) \neq 0$ for some $|\alpha|<1$. Show that there exists a function g, analytic and bounded by 1 in the unit disc, with $\left|g^{\prime}(\alpha)\right|>\left|f^{\prime}(\alpha)\right|$.
(b) Find $\max _{f}\left|f^{\prime}(\alpha)\right|$ where f ranges over the class of analytic functions bounded by 1 in the unit disc, and α is a fixed point with $|\alpha|<1$.
8. Let

$$
f(z)=\int_{0}^{1} \frac{\sin z t}{t} d t
$$

Show that
(a) f is entire;
(b) $f^{\prime}(z)=\int_{0}^{1} \cos z t d t$.
9. Given an entire function which is real on the real axis and imaginary on the imaginary axis, prove that it is an odd function, i.e., $f(z)=-f(-z)$.
10. Suppose f is analytic in $|z|<1, \operatorname{Im} z>0$, continuous on $|z| \leq 1, \operatorname{Im} z>0$ and real on the semi-circle: $|z|=1, \operatorname{Im} z>0$. Show that if we set

$$
g(z)= \begin{cases}f(z), & |z| \leq 1, \operatorname{Im} z>0 \\ \overline{f(1 / \bar{z}),} & |z|>1, \operatorname{Im} z>0\end{cases}
$$

then g is analytic in the upper half plane $\{z \in \mathbb{C}: \operatorname{Im} z>0\}$.

