Complex Analysis - Homework 5

1. Find a power series expansion for e^{z} about any point $a \in \mathbb{C}$.
2. Find a power series expansion for $1 / z$ around $z=1+i$.
3. f is called an odd function if $f(-z)=-f(z)$ for all $z ; f$ is called even if $f(z)=f(-z)$ for all z.
(a) Show that an odd entire function has only odd terms in its power series expansion about $z=0$.
(b) Show that an even entire function has only even terms in its power series expansion about $z=0$.
4. Show that

$$
f^{(k)}(a)=\frac{k!}{2 \pi i} \int_{C} \frac{f(\omega)}{(\omega-a)^{k+1}} d \omega, \quad k=1,2, \cdots
$$

where C is a circle surrounding the point a and f is entire.
5. (a) Suppose an entire function f is bounded by M along $|z|=R$. Show that the coefficients C_{k} in its power series expansion about 0 satisfy

$$
\left|C_{k}\right| \leq \frac{M}{R^{k}}
$$

(b) Suppose a polynomial is bounded by 1 in the unit disc. Show that all its coefficients are bounded by 1.
(c) (An alternative proof of Liouville's Theorem) Suppose that $|f(z)| \leq A+B|z|^{k}$ and that f is entire. Show that all the coefficients $C_{j}, j>k$, in its power series expansion are 0 .
6. Prove that a nonconstant entire function cannot satisfy the two equations
i. $f(z+1)=f(z)$
ii. $f(z+i)=f(z)$
for all z.
7. A real polynomial is a polynomial whose coefficients are all real. Show that every real polynomial is equal to a product of real linear and quadratic polynomials.
8. Suppose P is a polynomial (with complex coefficients) such that $P(z)$ is real if and only if z is real. Prove that P is linear.
9. Show that if f is analytic in $|z|<2$, there must be some positive integer n such that $f(1 / n) \neq 1 /(n+1)$.

