Complex Analysis — Homework 4

- 1. Suppose F is analytic on an open connected set $U \subset \mathbb{C}$. Prove that if F'(z) = 0 for any $z \in U$, then F is a constant.
- 2. Show that, if f is a continuous real-valued function and $|f(z)| \leq 1$, for |z| = 1, then

$$\Big|\int_C f(z)\,dz\Big| \le 4,$$

where $C = \{z \in \mathbb{C} : |z| = 1\}$ is the unit circle.

- 3. Let C be the curved given by $z(t) = e^{it}$, $0 \le t \le 2\pi$. Calculate
 - (a) $\int_C z^k dz$ for any integer k; (b) $\int_C \sin z dz$; (c) $\int_C (e^z)^3 dz$; (d) $\int_C \frac{z^2}{z+3} dz$.

4. Evaluate $\int_C (z-i) dz$ where C is the parabolic segment:

$$z(t) = t + it^2, \quad -1 \le t \le 1$$

(a) by applying Proposition 4.12,

(b) by integrating along the straight line from -1 + i to 1 + i and applying the Closed Curve Theorem.
5. Calculate

(a)
$$\int_0^{1+i} z^2 dz;$$
 (b) $\int_0^{\pi+2i} \cos(z/2) dz;$ (c) $\int_{2-i}^{2+i} (z-2)^3 dz.$