Complex Analysis - Homework 4

1. Suppose F is analytic on an open connected set $U \subset \mathbb{C}$. Prove that if $F^{\prime}(z)=0$ for any $z \in U$, then F is a constant.
2. Show that, if f is a continuous real-valued function and $|f(z)| \leq 1$, for $|z|=1$, then

$$
\left|\int_{C} f(z) d z\right| \leq 4
$$

where $C=\{z \in \mathbb{C}:|z|=1\}$ is the unit circle.
3. Let C be the curved given by $z(t)=e^{i t}, 0 \leq t \leq 2 \pi$. Calculate
(a) $\int_{C} z^{k} d z$ for any integer k;
(c) $\int_{C}\left(e^{z}\right)^{3} d z$;
(b) $\int_{C} \sin z d z$;
(d) $\int_{C} \frac{z^{2}}{z+3} d z$.
4. Evaluate $\int_{C}(z-i) d z$ where C is the parabolic segment:

$$
z(t)=t+i t^{2}, \quad-1 \leq t \leq 1
$$

(a) by applying Proposition 4.12,
(b) by integrating along the straight line from $-1+i$ to $1+i$ and applying the Closed Curve Theorem.
5. Calculate
(a) $\int_{0}^{1+i} z^{2} d z ;$
(b) $\int_{0}^{\pi+2 i} \cos (z / 2) d z$;
(c) $\int_{2-i}^{2+i}(z-2)^{3} d z$.

