Complex Analysis — Homework 3

- 1. Suppose $\sum a_n z^n$ and $\sum b_n z^n$ have radii of convergence R_1 and R_2 , respectively. Disprove that the radius of convergence of $\sum (a_n + b_n) z^n$ is smaller than or equal to min $\{R_1, R_2\}$.
- 2. Suppose $\sum a_n z^n$ and $\sum b_n z^n$ have radii of convergence R_1 and R_2 , respectively. Show that the power series

$$\sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_k b_{n-k}\right) \cdot z^n$$

converges to $\left(\sum_{n=0}^{\infty} a_n z^n\right) \cdot \left(\sum_{n=0}^{\infty} b_n z^n\right)$ for $|z| < \min\{R_1, R_2\}$.

$$f(z) = 1 + z + \frac{z^2}{2!} + \dots = \sum_{n=0}^{\infty} \frac{z^n}{n!}.$$

Show that

- (a) the radius of convergence of f(z) is ∞ ;
- (b) $f(z_1 + z_2) = f(z_1) \cdot f(z_2)$ for any $z_1, z_2 \in \mathbb{C}$;
- (c) $f(z) = e^z$ for any $z \in \mathbb{C}$.

(Hint: Problem 5 in Homework 2.)

4. Show that, for any $z \in \mathbb{C}$,

(a)
$$\sin z = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^n$$
,
(b) $\cos z = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^n$.

5. Show that there is no power series $f(z) = \sum_{n=0}^{\infty} c_n z^n$ such that

(i)
$$f(z) = 1$$
 for $z = \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots$,
(ii) $f'(0) > 0$.

6. Assume $\limsup_{n \to \infty} |c_n|^{1/n} < \infty$. Show that if we set

$$f(z) = \sum_{n=0}^{\infty} c_n (z - \alpha)^n,$$

then

$$c_n = \frac{f^{(n)}(\alpha)}{n!}.$$

- 7. Let C_1 be the curved given by $\gamma(t) = \cos(\pi t) + i\sin(\pi t)$, $0 \le t \le 1$, and C_2 be the curved given by $\sigma(t) = \cos(\pi t) i\sin(\pi t)$, $0 \le t \le 1$. Calculate
 - (a) $\int_{C_1} z^3 dz$ (c) $\int_{C_1} \frac{1}{z} dz$ (e) $\int_{C_1} \frac{1}{z^2} dz$ (b) $\int_{C_2} z^3 dz$ (d) $\int_{C_2} \frac{1}{z} dz$ (f) $\int_{C_2} \frac{1}{z^2} dz$

8. Let C be a piecewise C^1 curve, f and g be continuous functions on C, and α be any complex number. Then

$$\int_C \left(\alpha f(z) + g(z) \right) dz = \alpha \int_C f(z) \, dz + \int_C g(z) \, dz$$