Complex Analysis - Homework 3

1. Suppose $\sum a_{n} z^{n}$ and $\sum b_{n} z^{n}$ have radii of convergence R_{1} and R_{2}, respectively. Disprove that the radius of convergence of $\sum\left(a_{n}+b_{n}\right) z^{n}$ is smaller than or equal to $\min \left\{R_{1}, R_{2}\right\}$.
2. Suppose $\sum a_{n} z^{n}$ and $\sum b_{n} z^{n}$ have radii of convergence R_{1} and R_{2}, respectively. Show that the power series

$$
\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} a_{k} b_{n-k}\right) \cdot z^{n}
$$

converges to $\left(\sum_{n=0}^{\infty} a_{n} z^{n}\right) \cdot\left(\sum_{n=0}^{\infty} b_{n} z^{n}\right)$ for $|z|<\min \left\{R_{1}, R_{2}\right\}$.
3. Let

$$
f(z)=1+z+\frac{z^{2}}{2!}+\cdots=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}
$$

Show that
(a) the radius of convergence of $f(z)$ is ∞;
(b) $f\left(z_{1}+z_{2}\right)=f\left(z_{1}\right) \cdot f\left(z_{2}\right)$ for any $z_{1}, z_{2} \in \mathbb{C}$;
(c) $f(z)=e^{z}$ for any $z \in \mathbb{C}$.
(Hint: Problem 5 in Homework 2.)
4. Show that, for any $z \in \mathbb{C}$,
(a) $\sin z=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} z^{n}$,
(b) $\cos z=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} z^{n}$.
5. Show that there is no power series $f(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$ such that
(i) $f(z)=1$ for $z=\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots$,
(ii) $f^{\prime}(0)>0$.
6. Assume $\limsup _{n \rightarrow \infty}\left|c_{n}\right|^{1 / n}<\infty$. Show that if we set

$$
f(z)=\sum_{n=0}^{\infty} c_{n}(z-\alpha)^{n}
$$

then

$$
c_{n}=\frac{f^{(n)}(\alpha)}{n!}
$$

7. Let C_{1} be the curved given by $\gamma(t)=\cos (\pi t)+i \sin (\pi t), 0 \leq t \leq 1$, and C_{2} be the curved given by $\sigma(t)=\cos (\pi t)-i \sin (\pi t), 0 \leq t \leq 1$. Calculate
(a) $\int_{C_{1}} z^{3} d z$
(c) $\int_{C_{1}} \frac{1}{z} d z$
(e) $\int_{C_{1}} \frac{1}{z^{2}} d z$
(b) $\int_{C_{2}} z^{3} d z$
(d) $\int_{C_{2}} \frac{1}{z} d z$
(f) $\int_{C_{2}} \frac{1}{z^{2}} d z$
8. Let C be a piecewise C^{1} curve, f and g be continuous functions on C, and α be any complex number. Then

$$
\int_{C}(\alpha f(z)+g(z)) d z=\alpha \int_{C} f(z) d z+\int_{C} g(z) d z
$$

