Complex Analysis - Homework 2

1. (a) Show that $f(z)=x^{2}+i y^{2}$ is differentiable at all points on the line $y=x$.
(b) Show that it is nowhere analytic.
2. Show that a nonconstant analytic function cannot map a region (i.e. open connected subset in \mathbb{C}) into a straight line.
3. Find all analytic functions $f=u+i v$ with $u(x, y)=x^{2}-y^{2}$.
4. Suppose that f is an entire function of the form

$$
f(x+i y)=u(x)+i v(y)
$$

where $u, v: \mathbb{R} \rightarrow \mathbb{R}$. Show that f is a linear polynomial.
5. Prove that $f(z)=e^{z}, z \in \mathbb{C}$, is the only entire function which satisfies

$$
\begin{cases}f\left(z_{1}+z_{2}\right)=f\left(z_{1}\right) f\left(z_{2}\right), & \forall z_{1}, z_{2} \in \mathbb{C} \\ f(x)=e^{x}, & \forall x \in \mathbb{R}\end{cases}
$$

6. Let $z, z_{1}, z_{2} \in \mathbb{C}, x, y \in \mathbb{R}$. Verify the identities
(a) $\sin ^{2} z+\cos ^{2} z=1$,
(d) $\sin \left(z_{1}+z_{2}\right)=\sin z_{1} \cos z_{2}+\cos z_{1} \sin z_{2}$,
(b) $(\sin z)^{\prime}=\cos z$,
(e) $\cos \left(z_{1}-z_{2}\right)=\cos z_{1} \cos z_{2}+\sin z_{1} \sin z_{2}$,
(c) $(\cos z)^{\prime}=-\sin z$,
(f) $\sin (x+i y)=\sin x \cosh y+i \cos x \sinh y$.
7. Let

$$
f(z)=\alpha_{0}+\alpha_{1} z+\cdots+\alpha_{n} z^{n}
$$

be a polynomial with complex coefficients. Prove that
(a) there exist polynomials $p(x, y), q(x, y) \in \mathbb{R}[x, y]$ with real coefficients such that

$$
f(x+i y)=p(x, y)+i q(x, y), \quad \forall x, y \in \mathbb{R} ;
$$

(b) the polynomials $p(x, y), q(x, y)$ satisfy the Cauchy-Riemann equation

$$
\left\{\begin{array}{l}
p_{x}=q_{y} \\
p_{y}=-q_{x}
\end{array}\right.
$$

8. Let $p(x, y), q(x, y) \in \mathbb{R}[x, y]$ be polynomials with real coefficients, and let $f: \mathbb{C} \rightarrow \mathbb{C}$ be the function

$$
f(x+i y)=p(x, y)+i q(x, y), \quad \forall x, y \in \mathbb{R}
$$

Prove that there exist $\alpha_{0}, \cdots, \alpha_{n} \in \mathbb{C}$ such that

$$
f(z)=\alpha_{0}+\alpha_{1} z+\cdots+\alpha_{n} z^{n}, \quad \forall z \in \mathbb{C}
$$

if and only if $p(x, y), q(x, y)$ satisfy the Cauchy-Riemann equation

$$
\left\{\begin{array}{l}
p_{x}=q_{y} \\
p_{y}=-q_{x}
\end{array}\right.
$$

(Hint: Read the proof of Proposition 2.3.)
9. Find the radius of convergence of
(a) $\sum_{n=1}^{\infty} \frac{n!}{n^{n}} z^{n}$,
(b) $\sum_{n=0}^{\infty} \frac{2^{n}}{n!} z^{n}$.

